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Abstract

In the metric voting literature, both candidates and voters are
assumed to be embedded in a common metric space X repre-
senting positions on issues. The “cost” to a voter v of a candi-
date c is their distance d(v, c) in the space X (which is some-
times said to measure the difference in issue positions), and
it is presumed that voters with an ordinal ballot style would
rank their preferences in order of proximity, even if the metric
space is latent (or not explicitly known to the voters). Many
authors have searched for voting rules that tend to elect “op-
timal” (lowest-cost) winners, or where cost ratios have some
guarantee in the form of an upper bound. Most work has fo-
cused on optimizing cost in worst-case scenarios. In this short
paper, we conduct experiments from a different angle: if more
general fairness axioms can be cast as metric measurements,
then we can survey voting rules in terms of their fairness ten-
dencies. We particularly focus on a novel definition we call
group inefficiency, and highlight the finding that the group
perspective radically shifts which voting rules seem to deliver
on proportional fairness.

Motivation
Computational social choice theory is the study of group de-
cisions, using tools from computer science and economics.
Because it focuses on voting rules and their properties, it
is often used to give insights into democratic mechanisms,
such as those that elect political representatives. The moti-
vation for the current project is to take up current problems
of interest in computational social choice and show that re-
framing fairness axioms to be about salient groups of people
can cause extreme changes to the findings.

This paper fits squarely into an active research area
in computational social choice, but offers novel insights
through a change of perspective.

Main definitions
Elections, profiles, and voting rules
Suppose we have a set V of n voters and a set C of m can-
didates. An embedded election is a metric space X with dis-
tance function d, equipped with a map f : V ∪ C → X that
identify the voters and candidates with points in the space.
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This gives us a way to measure how different two candi-
dates are, and how close a voter is to a candidate. The asso-
ciated preference profile P = P (X, f) is a set of rankings
≽v for the v ∈ V , where for each voter v and pair of can-
didates c, c′, we have c ≽v c′ ⇐⇒ d(v, c) ≤ d(v, c′),
meaning that voters prefer the candidates located closer to
themselves. Importantly, the profile is strictly less informa-
tion than the embedded election, in the sense that the profile
can be derived from the embedding but not vice versa.

If P is the set of profiles of a given type, then M : P →
2C denotes a multi-winner election mechanism (otherwise
known as a voting rule). We will focus on rules designed to
elect |M(P )| = k winners.1 One simple example is single
non-transferable vote (SNTV), where we only pay attention
to voters’ first-place selections, and we elect the k candi-
dates with the most first-place votes. Another simple exam-
ple is plurality bloc voting, where we consider voters’ top
k preferences, awarding one point to a candidate for receiv-
ing one of these regardless of its position within the top k,
and elect the candidates with the most points. Many more
examples, both deterministic and randomized, are given be-
low. The study of metric distortion, which has attracted great
attention since its introduction circa 2017, evaluates the per-
formance of a mechanism on an embedded election by con-
sidering the ratio of distances (or costs, to use the economics
framing) between the winner(s) and those that are optimal in
X . The performance of a mechanism on a profile can then
be measured by the worst case over all embeddings consis-
tent with that profile. The foundational work is surveyed in
the next section.

Blocs, costs, and representative assignments
Informally, elections are called polarized when there are sig-
nificant, disjoint groups of voters whose voting behavior and
preferences are sharply different. In the metric setting, we
can easily model this by dropping groups of voter points cen-
tered at different locations. We call subsets of voters B ⊆ V
voting blocs.

For any given bloc B and set of candidates S, we then

1More precisely, we can take rules that are guaranteed to elect
k winners when candidates and voters are in general position. So
we accept rules for which ties are possible, but resolve when the
embedding is perturbed.



define the cost of S to B as

cost(B, S) =
∑
v∈B

∑
c∈S

d(v, c), (1)

in keeping with the dominant choice of objective function
in the single-winner literature, where the cost to a voter of
a candidate is given by distance and the societal cost is the
sum of the distances from all voters to the winner.

Next, suppose we have a way of assigning to a subset of
voters their preferred candidates from among a set of op-
tions. So, given a bloc B ⊆ V and a candidate set S ⊆ C, a
representative assignment is a function Φ : 2V × 2C → 2C

satisfying Φ(B, S) ⊆ S. This is thought of as identifying a
designated subset of candidates from S that correspond to
the voters in bloc B.

The choice of assignment function Φ can be shifted, but
in this paper we focus on a greedy proportional representa-
tion assignment that we denote by Φprop. For mechanisms
electing k winners, the proportional share of the winner set
for bloc B has size ⌊k|B|/n⌋. Using this, we can assign to a
bloc of voters the cost-minimizing set of candidates of pro-
portional size. For T ⊆ C we define

Φprop(B, T ) = argmin
S⊆T

|S|=⌊|T |·|B|/n⌋

cost(B, S). (2)

For example, if a bloc makes up 30% of the electorate in a
4-winner election, then among the winners they would be
assigned to their one favorite winner, i.e., the winning can-
didate who minimizes the summed cost to that bloc. But for
blocs smaller than 25% of voters, they would be assigned
the empty set in a 4-winner scenario.

Group-centered fairness
Definition 1 For a mechanism M, embedded election X ,
winner set W = M(X), and voter bloc B, define the group
inefficiency by

I(B) = IM,X(B) = cost(B,Φ(B,W))

cost(B,Φ(B, C))
.

We say M has overall inefficiency α if it has that level
of group inefficiency for the undivided electorate V , which
means that I(V) ≤ α, or in other words the cost of the win-
ners is no more than α times the cost of the metrically opti-
mal winner set. (This is the standard notion of distortion.)

We note that it is far more common in computational so-
cial choice papers to study the worst inefficiency of a mech-
anism by bounding the group inefficiency for any possible
voter bloc B ⊆ V . We will see below that this would hide
fundamental differences in fairness.

Related work
Our study branches off from a line of recent work that stud-
ies voting rules in metric settings. For single-winner vot-
ing rules, Anshelevich and Postl (2017); Anshelevich et al.
(2018) introduce the metric framework and a notion of seek-
ing low-distortion voting rules, proving bounds for both
known and novel election mechanisms. This led to a vibrant

line of work studying metric distortion of voting rules, which
in several cases led to the introduction of new rules that are
of significant independent interest (Charikar and Ramakrish-
nan 2022; Charikar et al. 2024; Kempe 2020; Kizilkaya and
Kempe 2022).

The case of multi-winner elections sometimes called
“committee voting,” though we will avoid that terminol-
ogy here because we are motivated by the case of politi-
cal representation. Despite being interesting and applicable,
multi-winner elections have received much less attention in
the metric voting literature, whether axiomatic or descrip-
tive, than the single-winner case. Exceptions include (Fal-
iszewski et al. 2017; Elkind et al. 2017b), as well as those
described further below. Results from our work are strongly
inspired by the latter paper or Elkind et al., where the au-
thors use simple metric embeddings in order to produce intu-
itive visualizations, giving qualitative insight into how elec-
tion mechanisms represent voters’ preferences. We focus on
measurements that build on their work by giving quantitative
degrees of fairness from various points of view.

Other notions of cost and efficiency for multi-winner sys-
tems include the following.

Worst-bloc fairness
Goel, Hulett, and Krishnaswamy (2018) evaluate the cost of
a winner set by the group of voters which is furthest away
from it. Specifically, for a blocs of size ℓ the cost is defined
as costℓ(W) = maxB⊂V,|B|=ℓ

∑
v∈B

∑
c∈W d(v, c).

Here, the authors define an ℓ-fairness ratio as
costℓ(W)/costℓ W∗ and search for values of ℓ and worst-
case preference profiles P to maximize it.

q-th closest
Caragiannis, Shah, and Voudouris (2022) define the cost to
voter v as their distance to their qth closest of the winners.
That is, if d1 ≤ d2 ≤ · · · ≤ dk are the distances from v
to the members of W listed in non-decreasing order, then
Φq(v,W) = dq . The q-cost of an election is then computed
as costq(W) =

∑
v∈V d(v,Φq(v,W)).

Optimizing for q-cost produces intriguing phase transi-
tions and some intuitively proportional outcomes, but it is
not sensitive to the concept of voter blocs.

γ-proportional representation
The very recent paper of Kalayci, Kempe, and Kher (2024)
is closest in spirit to our current setup. In their work, as in
ours, sufficiently large blocs of voters are assigned a propor-
tional share of representatives from the winner set, and cost
ratios are computed. Their main theorem is that a relatively
new voting rule (expanding approvals) gives a good guar-
antee, satisfying their definition of proportional fairness at
a constant level. The fundamental difference between their
definition and ours is that (like the worst-bloc definition
above) they look for the greatest inefficiency over all blocs,
while we focus on individual groups. As we show below,
this can greatly change the findings.



Election mechanisms
For our experiments, we consider a range of existing multi-
winner election mechanisms. When needed, we break ties
by randomly choosing among candidates. A full suite of
implemented election mechanisms is publicly available in
GitHub.2

• Single non-transferable vote (SNTV): Each candidate
receives a score equal to their number of first-place votes.
Winners are the k candidates with the highest scores.
This is also known as multi-winner plurality voting.

• Bloc: Among m candidates, a ranked ballot contributes
+1 to the score of each candidate ranked in the top k po-
sitions; again we choose the k candidates with the highest
scores.

• Single transferable vote (STV): This is a multi-round
process that uses a threshold of election, typically τ =
⌊ n
k+1 + 1⌋, to choose winners. Any candidate with more

than that level of first-place support is elected, and their
excess votes are transferred to the next selection of their
supporters with fractional weight. (For instance, if a can-
didate receives 150% of the threshold number of votes,
then their voters’ ballots are transferred to their next
choice with weight 50/150 = 1/3.) This continues until
k candidates are elected. If in a given round no candidate
meets the quota, then the one with the least first-place
support is eliminated and the ballots headed by those
candidates are transferred with full weight to their next
choice.

• Borda: Among m candidates, a ranked ballot contributes
m− j to the score of the candidate ranked in position j;
again we choose the k candidates with the highest scores.

• Chamberlin-Courant: This rule elects the group of k
candidates that maximizes the sum over voters of the
highest Borda score they award to any winner.
While appealing for its voter representation properties,
finding a winner set with this rule is an NP-hard prob-
lem (Procaccia, Rosenschein, and Zohar 2008). For our
purposes, however, we use an integer programming for-
mulation described by Skowron, Faliszewski, and Slinko
(2015), which is suitable for experiments with small
numbers of voters and candidates.

• Greedy Chamberlin-Courant (GreedyCC): This is
designed as an approximation algorithm for the
Chamberlin-Courant problem, which turns out to be sub-
modular (Lu and Boutilier 2011). In an iterative process
starting from W0 = ∅ we build a winner set by succes-
sively adding the candidate with the highest total Borda
score until k winners are selected.

• Monroe: This is nearly identical to Chamberlin-Courant,
but we add an additional constraint on the number of vot-
ers that a single candidate can represent to be between
⌊n
k ⌋ and ⌈n

k ⌉.
This is again NP-hard and we use a integer program-
ming formulation. A greedy approximation is possible
for this problem as well (Skowron, Faliszewski, and

2https://github.com/REDACTED/Metric-Vote-Representation

Slinko 2015), but has a much more involved implemen-
tation than its unconstrained counterpart.

• Plurality veto is an interesting election mechanism de-
signed by Kizilkaya and Kempe (2022) as a single-
winner rule achieving best-possible metric distortion.
Candidates start with initial scores equal to their number
of first-place votes. Then voters are arbitrarily ordered
(whether randomly and deterministically) and each voter
in turn is queried for their least favorite among those can-
didates with positive scores; that least-favorite candidate
loses a point. The winner is the last candidate with a posi-
tive score. We extend this rule to the multi-winner setting
by stopping when exactly k candidates remain.

• Expanding approvals Another recently designed multi-
round election (Kalayci, Kempe, and Kher 2024; Aziz
and Lee 2020), where at each round i all voters are
queried in a randomized order for their ith candidate
preference. As soon as a candidate c is named ⌈n

k ⌉ times,
they are immediately elected and all voters who previ-
ously voted for c are removed. This repeats until ballots
have been exhausted and we have elected k candidates.
Kalayci, Kempe, and Kher (2024) show that this rule has
strong guarantees in their framework of all-groups pro-
portionality.

Finally, we close with three multi-winner variants of the
fundamental Random Dictator mechanism for single-winner
election.

• Sequential Multi Random Dictator (SMRD): Ran-
domly select k voters, in order, to act as dictators. Se-
quentially elect their favorite candidate who has not yet
been elected.

• One-Shot Multi Random Dictator (OMRD): A single
voter is randomly chosen and their top k preferences are
immediately elected.

• Discounted Multi Random Dictator (DMRD): In ev-
ery round, a voter is randomly chosen and elects their top
(not-yet-elected) preference. Then all voters who voted
for the winning candidate in that round have their vot-
ing power discounted by a fraction ρ ≤ 1, and the voter
distribution is re-normalized for the next round. In the
experiments below, we execute DMRD with ρ = 1/2.

Empirical results
We conduct experiments in which each voter’s position is
randomly sampled from a normal distribution and candidate
positions are sampled from a uniform distribution on a larger
region containing the voter blocs. Following Elkind et al.
(2017a), we focus on simple settings that highlight the dif-
ferences between voting rules; all experiments are drawn in
the Euclidean plane R2.



Figure 1: Here, the top row shows the embedded election
setup for Experiment 1 (two blocs of equal size), and the
remaining rows show the outcomes of various multiwinner
voting rules. Election results can be visualized with KDE
plots (left column) or scatterplots (middle column) over
10,000 trials. Examples of single trials are shown in the right
column. This plot replicates the main demonstration from
Elkind et al. (2017a) and extends to more voting rules.

Figure 2: In Experiment 1 (two blocs of equal size), vio-
lin plots show group inefficiency compared to overall ineffi-
ciency, giving sharply different views on fairness.

Figure 3: In Experiment 2 (two blocs of varying sizes), av-
erage group inefficiency values are shown as bloc sizes vary.
Overall inefficiency once again tells a strikingly different
story from the fairness to the distinctive voter blocs.



Experiment list
1. Two blocs of equal size, each normally distributed, can-

didates uniform on square. 100 voters, 20 candidates, 4
winners.

2. Two blocs of varying size, each normally distributed,
candidates uniform on square. 100 voters, 20 candidates,
4 winners. Bloc sizes |B| = 5, 10, . . . 100.

3. Two equal blocs, each normally distributed, candidates
uniform on square. 10,000 voters, 20 candidates, 4 win-
ners.

4. Four equal blocs, all normally distributed, candidates
uniform on square. 100 voters, 20 candidates, 4 winners.

5. Four equal blocs, all normally distributed, candidates
uniform on square. 10,000 voters, 20 candidates, 4 win-
ners.

6. Four equal blocs, all normally distributed, candidates
uniform on square. 100 voters, 20 candidates, 5 winners.

7. Four equal blocs, all normally distributed, candidates
uniform on square. 10,000 voters, 20 candidates, 5 win-
ners.

Due to space constraints, most outputs are included in the
supplemental material. Note that the reason to conduct very
small experiments (with n = 100 voters) is to allow compar-
isons including computationally intensive voting rules like
Chamberlin-Courant; by juxtaposing with the outputs from
larger elections, we see that this does not cause a significant
change in our main findings for other voting rules.

Findings
Many observations are available from these experiments.
• Only the Borda rule has a clearly different pattern of win-

ners from the others when aggregated over many trials, as
seen in Figure 1. Even the completely unreasonable rule
OMRD, where one voter selects the entire winner set, re-
sembles the more proportional rules in the aggregate.

• There are subtle differences in the tendency of voting
rules to select compromise candidates, located between
the two voting blocs, in addition to a blatant tendency
from Borda rule to focus on those. Bloc voting, Greedy-
CC, and (surprisingly) OMRD are the most likely to
choose candidates in the compromise zone.

• The violin plots in Figure 2 show that the focus on in-
dividual salient groups gives a radically different view
of fairness than we get from the undivided electorate
(i.e., the usual metric distortion) or from the worst-case
choice of groups. STV and Monroe perform extremely
strongly for each bloc of voters, with expanding ap-
provals close behind, but all three look ordinary from
the whole-electorate perspective. And both groups pay
a steep cost in a Borda election, while that voting rule
performs peerlessly for the electorate at large.

• Figure 3 extends the theme that the group perspective is
crucial to a deeper understanding of fairness. The one-
shot random dictator rule OMRD, together with Bloc vot-
ing, stand out as most unfair for small voter blocs, with
Borda voting not far behind. Notably, OMRD is designed

as an intentionally unreasonable system and Borda vot-
ing is rarely used for political representation, but Bloc
voting is one of the most frequently used systems for lo-
cal election in the United States, such as for city councils
and county commissions.

• A definition which considers the worst case over all sub-
sets of voters, such as the proportional representation
definition of Kalayci, Kempe, and Kher (2024), would
hide the markedly strong group inefficiency performance
of STV, Monroe, and expanding approvals in a polar-
ized setting, because the whole-electorate inefficiency is
worse than for the natural choice of blocs.

• STV is currently used, or is being considered for adop-
tion, in many parts of the world. In the United States, re-
formers often claim that STV will provide stronger pro-
portional representation for minority groups than legacy
systems such as SNTV and Bloc voting.3 The current
demonstrations give supporting evidence for this asser-
tion from the perspective of distinctive voter blocs.

Conclusions
Real-world voting often involves measurable polarization;
for instance, in the decades that followed the passage of
the Voting Rights Act of 1965 (VRA) in the United States,
a lineage of statistical techniques has been created and re-
fined for quantifying the polarization along racial and eth-
nic lines. Minority groups who have distinct candidate pref-
erences may be entitled to consideration under the VRA if
their preferences are consistently blocked by a cohesive ma-
jority, as the U.S. Supreme Court recently held for Black
voters in Alabama, sending the state back to the drawing
board to make new electoral districts.

In the present paper, simple toy models of polarization
show that fairness for distinctive voting blocs is not well
captured by standard definitions of metric distortion, or even
by existing notions of proportional representation that take a
worst-case measurement over all groups.

3For example, this was a claim made by reform advocates in
Portland, Oregon, which recently moved to STV for the election of
its city council.
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Supplemental figures

Figure 4: Experiment 3 (2 blocs of equal size, 10,000 voters,
4 winners).

Figure 5: Experiment 3 (two blocs, 10,000 voters, 4 win-
ners).



Figure 6: Experiment 4 (four blocs of equal size, 100 voters,
4 winners).

Figure 7: Experiment 4 (four blocs, 100 voters, 4 winners).



Figure 8: Experiment 5 (four blocs of equal size, 10,000 vot-
ers, 4 winners).

Figure 9: Experiment 5 (four blocs of equal size, 10,000 vot-
ers, 4 winners).



Figure 10: Experiment 6 (four blocs of equal size, 100 vot-
ers, 5 winners).

Figure 11: Experiment 6 (four blocs of equal size, 100 vot-
ers, 5 winners).



Figure 12: Experiment 7 (four blocs of equal size, 10,000
voters, 5 winners).

Figure 13: Experiment 7 (four blocs of equal size, 10,000
voters, 5 winners).


