
Proportionality for ranked voting, in theory and practice

GERDUSBENADÈ, CHRISTOPHERDONNAY,MOONDUCHIN, and THOMASWEIGHILL

Classical social choice theory includes a long list of criteria, or fairness axioms, for elections where individuals

rank their preferences. Famous impossibility theorems from the 1970s concern the properties of voting rules

to convert profiles of ranked preferences to winner sets. But though public perceptions of fairness are strongly

keyed to proportional representation, notions of proportionality are strikingly missing from the standard roster

of fairness axioms. We design a framework to measure the degree of proportionality of seats to voter preference
under a wide class of systems for electing legislative bodies, even when elections are conducted without party

labels. We begin by building out a set of generative models for creating synthetic ranked preference profiles,

with an emphasis on flexibility and realism; in particular, we can efficiently generate polarized elections with

properties motivated by the extensive body of work on racially polarized voting in the United States. The

models use notions of blocs of voters and their slates of preferred candidates, which need not be known to

voters but could be implicit in their voting patterns. The models serve as a thought tool for building a new

definition of proportional representation and provide a framework that allows researchers to compare systems

of election in terms of their tendency to produce proportional outcomes. We illustrate this by giving both

empirical and theoretical results for single transferable vote (STV) elections.

This work brings a statistical modeling toolkit to the questions around ranked choice voting and propor-

tionality. At the same time, it builds a much-needed bridge from computational social choice theory to political

science, where degrees of proportionality have been intensely studied for well over a century, and to the work

of practitioners in current reform efforts around voting rights and democracy.
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Proportionality for ranked voting, in theory and practice 1

1 INTRODUCTION
In this paper, we give what we believe to be the first definition of the degree of proportionality of votes
to seats that is general enough for use with ranked preferences and any structure of districts and

voting rules that fills a legislative body.
1
This fills a gap in the classical social choice literature. Ken

Arrow’s foundational work studied social choice functions that combine multiple input rankings

into one output ranking; following this, a series of important results were conjectured and proved

from the 1960s to the 1990s concerning the use of rankings to output winner sets. Impossibility

theorems of Müller–Satterthwaite, Gibbard–Satterthwaite, and Duggan–Schwartz rule out the

viability for single-winner or multi-winner elections of simultaneously securing multiple axioms

of fairness (see, for instance, [Taylor, 2002]). Examples of fairness axioms from early social choice

theory include strategy-proofness, monotonicity, and the Condorcet criterion. However, these

simply do not rank high in the public discourse around democracy.

Another area of need in the computational social choice literature is in defining generative

models of election using domain knowledge of real-world electoral dynamics. We construct novel

generative models of ranking that are inspired by polarized elections in real-world settings; in

particular, voting rights law in the United States has used notions of voting blocs and their degrees

of cohesiveness for decades. (The term "generative model" is often associated with large language

models as paradigms of artificial intelligence; here, what is being generated is realistic voting rather

than realistic language.) With these models and access to observed electoral data, we can test voting

rules on both real and synthetic preference profiles, yielding information—some provable and

analytic and some qualitative and simulation-based—on whether roughly proportional outcomes

do indeed tend to result from so-called "semi-proportional" systems.

1.1 Contributions
New generative models. Generative models of voting use parameters and data—in our case,

historical voting patterns, demographics, cohesion parameters, and candidate strength—to build a

probability distribution from which ballots are sampled and elections can be simulated. In this paper

we build and test generative models. These are the first mechanisms for producing ranked ballots

that incorporate polarization according to candidate slates. We will offer some validation that our

models comport far better with real-world ranking data than previous models (solid coalitions, IC,

IAC), which builds our confidence in using them to analyze voting rules.

Rethinking proportionality. The proportionality of representation for a subgroup of voters could

have a very simple interpretation in demographic terms (the group’s seat share is in line with its

share of the electorate). However, this fails to account for any complexity in the voting patterns

of that group and the complementary voters. We define a framework that replaces demographic

proportionality for a bloc of voters with support proportionality for a slate of candidates: the slate’s

seat share should be in line with the combined support for its candidates. We note that this kind

of proportional representation is broader than that of PR systems such as party list voting, which

secure support proportionality—on the basis of party only—by construction, so that the finding of

proportional outcomes is vacuous on that axis. Here, we are measuring a kind of proportionality

that is endogenous or emergent with respects to votes cast, and can be measured not only on the

basis of party but with respect to any other cohesive preference. In other words, voters might not

even be aware of which candidates constitute a slate; slates can be identified after the fact on the

basis of trends in voter behavior.

1
In particular, both a collection of single-winner elections and a collection of multi-winner elections are covered in our

framework. All other notions we are aware of work by recourse to approval ballots, as we describe further below.
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2 Gerdus Benadè, Christopher Donnay, Moon Duchin, and Thomas Weighill

Incorporating domain knowledge. This project engages domain knowledge in voting rights law

and practice in multiple ways. First, we shift the definition of voter cohesion to match the ordinary

and legal use of the term. In the previous social choice literature, definitions of cohesive groups of
voters tend to revolve around overlapping approval ballots: for instance, Sánchez-Fernández et al.

[2017] call a group of voters ℓ–cohesive, where 𝑛 candidates are running for 𝑘 seats, if they comprise

at least ℓ𝑛/𝑘 people and their preferences overlap in at least ℓ candidates. This nuances earlier

notions in which "cohesion" requires only a non-empty overlap in approvals. By contrast, this

paper introduces notions of cohesiveness keyed to the probability of members of a group to support

candidates from a certain slate. Compare this to, for instance, the landmark Thornburg v. Gingles
decision of the U.S. Supreme Court, requiring Voting Rights Act plaintiffs to ascertain "whether

members of a minority group constitute a politically cohesive unit" by measuring whether "a

significant number of minority group members usually vote for the same candidates."
2
Expert work

supporting a finding of cohesiveness revolves around "statistical evidence of voting patterns" using

past elections, and polarization is typically summarized by using standard inference techniques to

estimate the share of support for slates of candidates by blocs of voters [Hebert et al., 2010]. The

authors of the present paper are drawing on just this kind of experience in voting rights expert

work.
3

Secondly, definitions related to justified representation are far from notions of proportionality

in the political science literature and the popular vernacular: seat share in line with vote share.

The relationship of seat share to vote share has been intensely studied at least since the late 19th

century, and measurement of deviation from ideal seats/votes curves has generated a significant

literature in the last fifty years especially in the work of Tufte, King, Grofman, and many more.

Finally, our use of ranked ballots rather than approval ballots is aligned with practice (and reform

momentum) in the United States and internationally. Several U.S. states have recently debated

adoption of ranked choice elections: Maine and Alaska now use ranked voting for statewide

elections, with Nevada midway through the process of enacting a shift. Dozens of cities from San

Francisco to Minneapolis use ranked choice for municipal elections, and New York City recently

switched to ranked choice to elect city councillors and the mayor. Outside of the U.S., ranked choice

voting is used for local or legislative elections in much of the Anglophone world—including Scotland,

Ireland, New Zealand, and Australia—as well as for parliamentary elections in Malta and Papua

New Guinea. As ranked voting is considered more broadly, stakeholders are increasingly asking

about its properties, and one claim in common circulation is that they deliver more proportional

outcomes for minority voting groups than could be expected from first-past-the-post systems. We

seek to investigate these claims.

Illustrating with STV. While our notion of proportionality and the generative models we propose

do not assume use of any specific voting rule, we will use single transferable vote (STV) as a test
case. STV is a family of voting rules within ranked choice voting, using a transfer mechanism for

selection of multiple winners, where the number of seats to be filled in a single contest is called the

magnitude. In STV elections, there is a threshold level of support needed to be elected—typically

the threshold is about 1/(𝑘 + 1) of the first-place votes, where 𝑘 is the magnitude. The election is

conducted in rounds. As candidates are either elected (by passing the threshold) or eliminated from

contention, the (surplus) votes supporting those candidates are transferred to the next options on

2Thornburg v. Gingles (1986), https://www.oyez.org/cases/1985/83-1968.

3
For instance, consider recent expert work in Texas: minority racial groups were estimated to collectively support Democratic

candidates in general elections from 2012–2020 at rates of 85-92%, while white voters supported Republican candidates at rates

of 75-85% in the same contests. Expert report of redacted, TX NAACP et al. v. Abbott, Case No. 1:21-CV-00943-RP-JES-JVB.
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Proportionality for ranked voting, in theory and practice 3

their respective ballots.
4
We note that instant runoff voting or IRV, an extremely popular alternative

in practice, is the same voting rule as STV in the special case 𝑘 = 1.

Though STV is the basis for the examples in this paper, the express goal of the work is to set up

a framework suitable for the comparative study of any voting rules applied to ranked ballots.
5

1.2 Related work
Statistical ranking models, or models that assign a probability to permutations on a set of elements,

have been studied at least since the early 20th century, going back to Thurstone [1927]. Subsequent

models include those introduced by Bradley and Terry [1952], Plackett [1975], and Luce [1959],

which form the basis for the BT and PL models in this paper, respectively. Benter [2008] introduced a

variation of the Plackett model with a dampening parameter to account for less careful deliberation

of lower-ranked items. Johnson et al. [2002] proposed a model to combine rankings that were

determined by several different sources—which could have used different methods and criteria—into

an aggregate, or meta, ranking scheme.

Ranking models have been used in a variety of applications in the broader social science literature.

Stern [1990] applies the methods to horse races, where the marginal probability of each horse

finishing first is known in advance. Bradlow and Fader [2001] apply time series models to Billboard

"Hot 100" list, to show how song rankings change over time. Graves et al. [2003] apply a combination

of ranking models to racecar competition outcomes. In the area of election analysis, Upton and

Brook [1975] fit a Plackett model to ranked ballots in London elections to determine the effect of

candidate name ordering on the ballots, also known as positional bias. Gormley and Murphy [2008]

fit a combination of Plackett-Luce and Benter models to polling data from Irish elections in 1997

and 2002. In particular, they find the models to be effective in identifying voting blocs (groups of

voters with similar ranked preferences) within the electorate. In the same paper, the authors fit

mixtures of Plackett-Luce models to cast vote records from Irish elections, with the main goal of

identifying blocs within the electorate.
6
These analyses are descriptive, based on historical data.

In a recent paper, Garg et al. [2022] model outcomes of elections in multi-member Congressional

districts under a solid coalition assumption, which means that the ballots are effectively unranked

(and do not differentiate candidates within each coalition).

Our work is related in several respects to the existing computational social choice literature.

There is a large body of work on the axiomatic properties of voting rules in various settings,

including notions with a family resemblance to proportionality. The classical fairness axiom called

Proportionality for Solid Coalitions (PSC), introduced by Dummett [1984], has been widely noted

to be inadequate because it only applies with perfectly solid voting blocs, which never occurs

in practice. The chief examples of axioms improving on PSC are those of (extended) justified

representation (JR/EJR) [Aziz et al., 2017], which are structured as guarantees under approval-based

multi-winner voting: sufficiently large groups whose approvals have non-trivial overlap can’t be

shut out of the winner set. Refer to Lackner and Skowron [2022] for a more thorough discussion.

Various papers have used proportionality language for functions that map approval ballots to

ranked outcomes [Skowron et al., 2017] and, quite recently, for functions that carry ranked ballots

4
Specific mechanics vary; in this paper we have implemented the vote-tallying mechanism used by Cambridge, MA for its

City Council elections, except as noted below.

5
When single-winner rules like IRV are used to elect a representative body, as in the New York City Council, the framework

here will be applicable with respect to similar candidates across the full candidate pool.

6
In the language that will be introduced below, this roughly corresponds to fitting a Name-PL model (see Remark 4) with

unknown group sizes and no slate structure. That is, their method is designed to learn preferences for all candidates by each

of two blocs. Fitting a mixture model in this way does not produce a partition of candidates into slates so it is not clear how

it might fit with a notion of proportionality.
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to sets of approval ballots, and from there map to multi-winner outcomes [Brill and Peters, 2023].

While similar in spirit, it would be difficult to compare ideas invoking justified representation

to ours directly because the JR family of axioms relies on a fundamentally different definition of

cohesion. Furthermore, like PSC, these axioms are binary: a winner set satisfies rank-PJR+, for

instance, or it does not. These definitions are not keyed to giving degrees of proportionality.

In terms of generative models of election, numerical experiments in this literature traditionally

rely on assumptions of impartial culture [Pritchard and Wilson, 2009], under which voters are

independent and every permutation of candidates is equally likely, impartial anonymous culture, in
which Lebesgue measure is used to set relative preferences, or use spatial or distance-based models

[Elkind et al., 2017, Tideman and Plassmann, 2010]. See Szufa et al. [2022, 2020] for a comparison of

common generative models (called "statistical cultures") and a recent discussion of how to sample

approval elections.

Spatial models [Enelow and Hinich, 1984] represent voters (and candidates) as ideal points in a

metric space—in other words, using a space with a distance function as the latent space for voter

preferences—and are common across fields. Voters are presumed to vote either deterministically

for their closest representatives or probabilistically (upweighting closer candidates) [Burden, 1997].

Two commonly used methods for estimating ideal points (typically from Congressional roll-call

data) are NOMINATE [Poole and Rosenthal, 1985] and IDEAL [Clinton et al., 2004]. Ranked choice

voting models can be built from spatial models. For example, Gormley and Murphy [2007] combine

a spatial and Plackett-Luce model to analyze Irish STV elections (discussed further in §5), and

Kilgour et al. [2020] use a spatial model (where voters rank by proximity) to measure the effect of

ballot truncation on single-winner ranked choice outcomes. Garg et al. [2022] also use a spatial

model in one section, with voter ideal points extracted from ideology ratings in a commercial voter

file, to relate the "diversity" of elected officials to the sizes of multimember districts.

Spatial models on one hand, and approval votes on the other, are favored by the mathematically

inclined because they lend themselves to provable theoretical properties of voting rules. For example,

under the implicit utilitarian voting framework, ordinal votes are proxies for underlying utilities

and the distortion of a voting rule captures its worst-case loss compared to having full information

[Procaccia and Rosenschein, 2006]. Anshelevich et al. [2018] study the distortion of STV under

metric preferences, and Gkatzelis et al. [2020] recently settled a well-known conjecture on the

optimal metric distortion when aggregating rankings to elect a single winner.

Our goal is to strike out in a new direction, with definitions that enable new questions to surface.

2 BLOCS, SLATES, AND PROPORTIONALITY
2.1 Defining blocs, slates, and notions of preference
The concept of blocs and slates is straightforward: slates are disjoint sets of candidates, such that

voter propensity to support the various slates can be measured. The idea that voters would exhibit

a preference among slates makes sense for an electorate overall, or when split out into disjoint

groups of voters we call blocs.
To make this precise, we must delineate what it means for the preference profile consisting of

ranked votes from a group of voters to display an overall preference for one group of candidates over

another. We list several notions of preference or propensity that can be measured in an observed

vote profile—that is, these are measurements that can be made on any cast vote record that has

been minimally cleaned so that each ballot is a partial ranking (a permutation of a subset of the

candidates).

Definition 2.1. Suppose an election is conducted with bloc structure (𝐴,A, 𝐵,B) consisting of
sets of voters 𝐴, 𝐵 and corresponding slates of candidates A = {𝐴1, . . . , 𝐴𝑟 } and B = {𝐵1, . . . , 𝐵𝑠 }.
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This accommodates an election with one bloc (where we will adopt the convention 𝐴 = ∅) or two,
and this definition is easily expanded to more blocs. Often, we will use 𝐴 for the majority bloc and

𝐵 for the minority, when those are clear. The preference definitions are given below for bloc 𝐵.

Suppose voters are allowed to rank up to 𝑛 ≤ 𝑟 + 𝑠 candidates on their ballots—that is, ballots

may be incomplete rankings of varying length, up to some maximum.

• Bloc 𝐵 prefers slate B with first-place preference 𝑝𝐵 if the share of first-place votes in the

profile for B candidates is 𝑝𝐵 .

• Bloc 𝐵 prefers slate B with positional preference 𝑃𝐵 = (𝑝1, 𝑝2, . . . , 𝑝𝑛) if the share of ballots
placing an B candidate in position 𝑖 (among those for which a vote is cast and neither

slate was exhausted in the higher positions) is 𝑝𝑖 . In particular, the special case of consistent
positional preference 𝑝𝐵 corresponds to 𝑃𝐵 = (𝑝𝐵, 𝑝𝐵, . . . , 𝑝𝐵).

• Given a positional scoring rule with weights (𝑤1,𝑤2, . . . ,𝑤𝑛), we say that 𝐵 prefers slate B
with score preference 𝑝𝐵 if the share of their score forB candidates is 𝑝𝐵 . The default optionwill

be to give standard Bordaweights to the top𝑘 ranks via the score vector (𝑘, 𝑘−1, . . . , 1, 0, . . . , 0)
in a magnitude-𝑘 election; we will refer to this as (top-𝑘) Borda preference. For the purpose of
Borda scoring, partial rankings are completed with an averaging convention (see §A).

Preferences for the 𝐴 bloc are defined analogously; the only difficulty in extending to more than
two blocs is one of cumbersome notation.

We will interpret each of these preference parameters as an indication of how cohesive bloc 𝐵 is,

with higher preference parameters (closer to 1) indicating more strongly aligned blocs.

Example 2.2. Suppose an election has been conducted with 𝑟 = 3, 𝑠 = 2, 𝑛 = 5 (i.e., complete

rankings are allowed), and suppose the voters are labeled as 𝐴 voters or 𝐵 voters. Suppose that the

summarized preference profile for the 𝐵 bloc is given by

(by name)

×2 ×3 ×8 ×1 ×5 ×3 ×5
𝐵1 𝐵1 𝐵1 𝐴1 𝐵2 𝐵2 𝐵1

𝐵2 𝐴2 𝐵2 𝐵1 𝐵1 𝐴3 𝐵2

𝐴1 𝐵2 𝐴2 𝐵2 𝐴1 𝐴1

𝐴2 𝐴3 𝐴1 𝐴3 𝐵2

𝐴3 𝐴2 𝐴2 𝐴2

i.e.,

(by slate)

×7 ×3 ×8 ×1 ×3 ×5
𝐵 𝐵 𝐵 𝐴 𝐵 𝐵

𝐵 𝐴 𝐵 𝐵 𝐴 𝐵

𝐴 𝐵 𝐴 𝐵 𝐴

𝐴 𝐴 𝐴 𝐵

𝐴 𝐴 𝐴

Then the first-place preference of the 𝐵 bloc for B candidates is 26/27, the positional preference
is ( 26

27
, 21
27
, 4
7
, 3
3
,−), the Borda preference to all five places is 232/405 with ballot completion, and

the top-2 Borda preference is 73/81. Note that the last few positional scores are 4/7, 3/3, and
undefined—rather than 4/22, 3/21, and 0—because of only considering ballots which have not

exhausted the 𝐵 candidates.

2.2 Defining proportionality
If the electorate is undivided (𝐴 = ∅) and the voters support slate B with propensity 𝜋𝐵 , then we

interpret that as voters giving the slate 𝜋𝐵 share of their support. In this case, the proportionality

ideal is extraordinarily simple: seat share equals vote share, i.e.,

𝑆𝐵 = 𝜋𝐵 .

When voters only select a single candidate, this is exactly the vernacular notion of proportionality.

When there are two distinct blocs with different voting behavior that partition the whole

electorate, this extends by convex combination to a natural heuristic for a proportional outcome of
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6 Gerdus Benadè, Christopher Donnay, Moon Duchin, and Thomas Weighill

an election. If 𝜋𝐵 is the preference parameter for bloc 𝐵 towards its candidates and likewise 𝜋𝐴 for

bloc 𝐴, then the proportionality target sets seat share 𝑆𝐵 for the B slate at

𝑆𝐵 = 𝑁𝐵 · 𝜋𝐵 + (1 − 𝑁𝐵) (1 − 𝜋𝐴),
where 𝑁𝐵 is the share of voters from the 𝐵 bloc. That is, proportionality pins the representation to

combined support for B candidates: the size of the 𝐵 bloc times its level of cohesion (the propensity

to vote for B candidates) plus the size of the complementary bloc times its level of crossover voting

(again, the propensity to vote for B candidates).
7

This enables us to say, for instance, whether a particular election outcome was near-proportional

(in a given bloc structure, if applicable) with respect to first-place preferences, or to Borda prefer-

ences, or any other notion of propensity. Proportionality is not a foregone conclusion for ranked

choice voting even in the extremely simple case where the blocs are defined by first-place votes;

lower-ranked choices may or may not track closely with first-place preference.

Example 2.3. We use a sample of nine real-world Scottish local government STV elections to

illustrate how to use the definition in practice. We illustrate with both first-place preference and

score preference.

first-place pref. top-𝑘 Borda share

STV

election (𝑟, 𝑠, 𝑘) 𝜋𝐵 proportionality 𝜋𝐵 proportionality
outcome

North Ayrshire 2022 Ward 1 (9, 3, 5) 0.35 1.75 seats 0.35 1.75 seats 2 seats

Angus 2012 Ward 8 (4, 2, 4) 0.39 1.56 seats 0.40 1.60 seats 2 seats

Clackmannanshire 2012 Ward 2 (5, 3, 4) 0.49 1.96 seats 0.53 2.12 seats 2 seats

Aberdeen 2022 Ward 12 (7, 3, 4) 0.48 1.92 seats 0.48 1.92 seats 2 seats

Aberdeen 2017 Ward 12 (7, 3, 4) 0.36 1.44 seats 0.39 1.66 seats 2 seats

Falkirk 2017 Ward 6 (3, 3, 4) 0.56 2.24 seats 0.57 2.28 seats 2 seats

Renfrewshire 2017 Ward 1 (5, 3, 4) 0.43 1.72 seats 0.42 1.68 seats 2 seats

Fife 2022 Ward 21 (5, 3, 4) 0.45 1.80 seats 0.45 1.80 seats 2 seats

Glasgow 2012 Ward 16 (9, 3, 4) 0.41 1.64 seats 0.39 1.56 seats 2 seats

Table 1. Here, 𝑠 is the number of B candidates (defined by membership in the Scottish National Party and
the Greens), 𝑟 is the number of candidates from all other parties, and 𝑘 is the number of seats to be filled in
the election. We treat the electorate as a single bloc (undivided) and measure 𝜋𝐵 as the level of first-place
support for the B slate, and the share of top-𝑘 Borda scores, respectively, for the B slate.

We adopt a simplified slate structure where two Scottish parties—Scottish National and Green—

are defined as a slate B, and the complementary slate A combines all other parties.
8
In Table 1 we

consider the level of proportionality in two ways. We first use first-place preference to define 𝜋𝐵 ,

the propensity of voters to support slate B. (Equivalently, we can think of this as defining blocs

by first-place vote and adopting 100% cohesion.) This means that the number of seats needed to

7
One could consider alternative definitions of proportionality, for example, based on a bloc-weighted combination of the

number of seats a slate wins in each of the hypothetical elections in which only one of the blocs participates. However, this

requires fixing a voting rule. We deliberately propose a notion of proportionality that is agnostic to the choice of voting rule.

8
The other parties include Conservatives, Labour, Liberal Democrats, multiple parties defined by their stance on independence

from the UK, far-right parties like the National Front, and some farther-left socialist parties. STV can be tested with respect

to any slate, though securing proportionality by first-place preference will be most likely when the slate has cohesive

support from a subset of voters.
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achieve (first-place) proportionality is 𝜋𝐵 · 𝑘 , the proportional seat share times the number of seats.

Applying an alternative choice of propensity, we can use 𝜋𝐵 to measure the slate-B share of the

top-𝑘 Borda scores to arrive at a different proportionality target.

3 GENERATIVE MODELS
3.1 Constructing the models
In this section, we set up generative models of election, including several variants derived from

classical statistical ranking literature in the style of Plackett-Luce and Bradley-Terry models.
9
All

five models produce rankings of candidates; one of the five includes partial rankings at a rate keyed

to historical data. The statistical ranking models will be introduced with what we call Slate vs.

Name versions: the Slate versions begin by constructing an abstract ballot type before filling in

candidate names, while the Name versions work directly with candidate names. Though at first the

by-name and by-slate versions may seem extremely similar, we find that Slate-PL and Slate-BT have

several desirable properties compared to Name-PL and Name-BT. These, together with a model

called the Cambridge sampler (Slate-CS), make up the generative models explored in the empirical

work in this paper. In this paper we focus on settings with 1-2 blocs for notational convenience but

the framework immediately expands to more groups.

Definition 3.1. For all of the models below, assume a fixed bloc structure (𝐴,A, 𝐵,B) with
A = (𝐴1, . . . , 𝐴𝑟 ) and B = (𝐵1, . . . , 𝐵𝑠 ), allowing the possibility that 𝐴 = ∅ as before.

A ballot is a partial or complete ranking of the 𝑟 + 𝑠 candidates and a ballot type is a partial or
complete permutation of the symbols𝐴𝑟𝐵𝑠 , i.e., a simplified ballot that treats the candidates of each

slate as indistinguishable from each other.

The models below will use the following parameters to generate a profile for bloc 𝐵:

Cohesion Tendency of the bloc to support slate B, given as a parameter 𝜋𝐵 ≤ 1 (typically required to

be at least 1/2 in the multi-bloc case).

Strength Tendency of bloc 𝐵 to agree on preferred candidates within each slate. This consists of

probability vectors 𝐼𝐵𝐴 = (𝑎1, . . . , 𝑎𝑟 ) and 𝐼𝐵𝐵 = (𝑏1, . . . , 𝑏𝑠 ); i.e., the entries are non-negative
and sum to one. For instance, if 𝐼𝐵𝐴 = (.1, .8, .1), then typical 𝐵 voters strongly prefer candidate

𝐴2 to 𝐴1 or 𝐴3.

We can combine the cohesion and strength data into a single probability vector

𝐼𝐵 =
(
(1 − 𝜋𝐵)𝑎1, . . . , (1 − 𝜋𝐵)𝑎𝑟 , (𝜋𝐵)𝑏1, . . . , (𝜋𝐵)𝑏𝑠

)
.

Using these components, we can define five generative models as follows. The first two work

directly with ballots, while the latter three first construct ballot types. These are analogous to the

profile by name and the profile by slate in Example 2.2.

Name-PL Plackett-Luce by name: Each 𝐵-bloc voter chooses candidate 𝑖 to be ranked first with proba-

bility 𝐼𝐵 (𝑖). They continue to select candidates for lower-ranked positions in order, at each

stage selecting candidate 𝑗 with probability proportional to 𝐼𝐵 ( 𝑗). In other words, each voter

samples their ballot without replacement from all candidates proportional to their weighting

in 𝐼𝐵 .

Name-BT Bradley-Terry by name: The probability that a 𝐵 voter casts a ballot 𝜎 is proportional to∏
𝑖<𝜎 𝑗

𝐼𝐵 (𝑖)
𝐼𝐵 (𝑖) + 𝐼𝐵 ( 𝑗)

,

9
Earlier versions of the Name-PL, Name-BT, and Slate-CSmodels have been discussed in unpublished work by an overlapping

collection of authors. References are suppressed here for anonymization purposes.
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where 𝑖 <𝜎 𝑗 means that 𝑖 is ranked before (i.e., higher than) 𝑗 in 𝜎 . In other words, for each

pairwise comparison of candidates, we introduce a term for the likelihood of ranking one

before the other coming from the relative weights in 𝐼𝐵 .

Slate-PL Plackett-Luce by slate: Each 𝐵-bloc voter chooses between the symbol 𝐴 and 𝐵 in the 𝑖th

position with probability 𝜋𝐵 of choosing 𝐵, as long as both A candidates and B candidates

remain available. Once a slate is exhausted, the rest of the complete ranking is filled in with

the remaining symbol.

Slate-BT Bradley-Terry by slate: Suppose a ballot type 𝜎 is a permutation of 𝐴𝑟𝐵𝑠 , that is, an ordered

list containing 𝑟 𝐴 symbols and 𝑠 𝐵 symbols. Suppose that out of the 𝑟𝑠 comparisons of the

instances of 𝐴 with the instances of 𝐵, the 𝐴 occurs earlier than the 𝐵 a total of 0 ≤ 𝑖 ≤ 𝑟𝑠

times. The probability that a 𝐵 voter casts this ballot is proportional to (1 − 𝜋𝐵)𝑖 (𝜋𝐵)𝑟𝑠−𝑖 .
Slate-CS Cambridge sampler: We draw from a dataset consisting of ten years of ranked votes from city

council elections in Cambridge, MA. Historical candidates have been labeled as white (W) or

as people of color (C), with help from local organizers. To use this model, we make a choice

to designate bloc 𝐵 as corresponding to voters who put a W candidate first (𝐵 =𝑊 ), or who

put a C candidate first (𝐵 = 𝐶). We use the cohesion parameter 𝜋𝐵 to decide probabilistically

whether the voter chooses their own slate or the other slate in the first position. Then we

complete the ballot type by drawing with weight proportional to frequency from the cast

ballots with that header.

In all three Slate models, we must then assign candidate names to the symbols 𝐴 and 𝐵. We do

so by drawing without replacement (Plackett-Luce style) from 𝐼𝐵𝐴 and 𝐼𝐵𝐵 separately to order A
and B, then fill in names accordingly.

Since a PL voter can be thought to fill in their ballot from top to bottom according to pre-computed

preferences, we can think of this as modeling an "impulsive" voter. By contrast, a BT voter makes

comparisons of every two entries on their ballot and weighs that ballot against one with some

reversals, modeling a "deliberative" voter. These give new generative models to study, greatly

expanding on the generative models in the literature, and they do so in a manner that comports well

with U.S. voting rights law; we can plug in standard cohesion parameters for majority and minority

groups as the 𝜋𝐴, 𝜋𝐵 . We will give a brief validation showing model performance in matching a few

observed elections in §3.2.2.

Remark 1 (PL preferences). Slate-PL with (𝐴,A, 𝐵,B) and any cohesion and candidate strength
parameters is expected to produce blocs with consistent positional preference 𝜋𝐵 (respectively 𝜋𝐴) for
their own slates, and therefore with first-place preference 𝜋𝐵 (or 𝜋𝐴) as well.
Remark 2 (Names versus slates). It turns out to be an important distinction to work directly

with the names or to create a type first, then add names. The reason for the divergence is that the Slate
models handle 𝐼𝐵𝐴 and 𝐼𝐵𝐵 separately; concatenating them into 𝐼𝐵 before making length comparisons
yields unintended results, such as a highly cohesive bloc whose voters tend to put their strong candidate
first and then immediately cross over to supporting the opposite slate. These effects can be explored in
the supplementary plots (§??) which compare all five models.

Remark 3 (About the Cambridge data). Cambridge, Massachusetts uses STV for its city council
and school board elections and has done so since 1941. Our source of Cambridge historical data is city
council elections to fill 𝑘 = 9 seats by STV from 2009 to 2017, coded by candidate race as described
above; there are frequently 20 or more candidates who run in each contest. If a ballot type is selected
from the historical frequency histogram that has more candidates from a given slate than the (𝑟, 𝑠)
chosen for a given simulation run allows, then we ignore further instances. For instance, a ballot type
of 𝐴𝐴𝐴𝐵𝐵 in an election where 𝑟 = 𝑠 = 2 will be read as 𝐴𝐴𝐵𝐵.
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One valuable aspect of our use of Cambridge historical data in the present study is that it lets
us incorporate realistic short-ballot voting behavior without a proliferation of extra parameters. For
instance, Cambridge voters cast "bullet votes" (listing only one candidate and leaving other positions
blank) 7501 times out of 87,914 ballots cast in our data set, and this will be reflected in the ballots
generated by the CS model. However, a serious limitation is that we have coded the candidates by
race, while Cambridge city council politics are likely more polarized by other candidate features—for
instance, an explicit slate of affordable housing candidates is routinely advertised before election day
and is highly salient to voter behavior. Nevertheless, race is a candidate feature often apparent to voters
which allows us to observe naturalistic patterns of alternation in voting.

Remark 4 (Mixture models). The definitions above are in terms of specified blocs of voters with
different voting preferences. However, there is a strong connection to mixture models suggested by the
structure here. In a mixture model, each voter is assigned independently to a class, and then randomly
submits a ballot based on the parameters for that class. More precisely, if 𝑁1 and 𝑁2 are the weights
for two different classes of voter with 𝑁1 + 𝑁2 = 1, and 𝜇1 and 𝜇2 are two distributions on ballots
corresponding to the two classes, the probability of a ballot 𝜎 is

𝜇 (𝜎) = 𝑁1𝜇1 (𝜎) + 𝑁2𝜇2 (𝜎).

As the number of voters increases, the fraction of voters assigned to each class converges to 𝑁1 and
𝑁2 respectively; for large numbers of voters we can therefore consider the size of each class to be
predetermined and treat voters as if they belong to two blocs of fixed size.
In particular, since it considers pairwise probabilities, the BT model with two blocs resembles a

mixture of Mallows models. It differs in allowing swaps to be weighted by preference between slates
rather than by their position in the ranking.

3.2 Visualization
3.2.1 MDS plot of vote profiles. One difficulty in studying ranked choice elections is that, unlike

oversimplified Example 2.2, real-world elections frequently have too many valid ballots possible

to effectively see the full preference profile. For instance, an election with six candidates can be

thought of as having 1236 possible ballots to cast—there are 6! complete rankings and a roughly

equal number of partial rankings.
10
Thinking of profiles as distributions over valid ballots allows

us to define natural notions of distance between profiles, such as the 𝐿1 distance between profiles

given by the sum over possible ballots of the absolute value of the difference of shares for that

ballot. (Up to a constant factor, this is the same as the total variation distance of distributions.) With

this notion we can visualize differences between the generative models as we vary parameters.

To illustrate the importance of candidate strength, we introduce four out of the infinitely many

variations on 𝐼𝐵 concerning the preferences of 𝐵-bloc voters.

• U (uniform-uniform): preferences are uniform over A candidates and uniform over B candi-

dates.

• S (strong-strong): preferences are strong over both slates, namely with some candidates

receiving more support.

• X (uniform-strong): uniform support for A candidates and strong support for some B
candidates;

• Y (strong-uniform): the reverse.

10
Here, we identify a ballot of length 5 with a complete ranking of length 6, since the last-place candidate is implicit.
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10 Gerdus Benadè, Christopher Donnay, Moon Duchin, and Thomas Weighill

Fig. 1. Multi-dimensional scaling (MDS) plot for one-bloc profiles with 𝑟 = 𝑠 = 3 (3 candidates per slate), under
a variety of generative models and candidate strength scenarios. Each model is designated by a different color,
and the candidate strength scenarios are denoted U, S, X, Y, as described in the text. The pairwise distances
between profiles are computed with 𝐿1 distance on the distributions. Each preference profile has 1000 ballots,
and we have generated 10 profiles by each of the 16 model/strength pairs. Note: it is not surprising that CS
profiles, whether bloc B is identified with𝑊 -led or 𝐶-led ballots, fall far from PL and BT profiles, because PL
and BT always generate complete rankings, while CS uses real historical data that includes many partial
rankings. This observation can be used to give a sense of scale for the distances in the plot.

In themulti-dimensional scaling (MDS) plot in Figure 1, the first-place preference forB candidates

is 𝜋𝐵 = .75; Supplemental Figure 8 shows how the outputs change as 𝜋𝐵 varies. In this plot, we can

see some systematic differences and similarities.
11

For instance, strength scenarios Y and X interpolate between U and S, as we might have expected.

Also, BT profiles resemble both kinds of Cambridge outputs more than PL profiles do, though the

reason for this is far less clear. (Compare Supplemental Figures 10–18, which bear this out from

another point of view.)

3.2.2 Validation on Scottish elections. A benefit of using parameterized generative models is the

possibility of fitting to real-world elections. Though we leave a full-bore fitting effort to future work,

this section shows the potential of this approach to match the observed non-solidity of coalitions.

To this end, we define a swap distance between two ballot types, partial or complete. For complete

ballots, this counts the smallest number of swaps of neighboring symbols necessary to transform

one ballot type into the other; for instance, dist(𝐴𝐴𝐵𝐵𝐵,𝐴𝐵𝐵𝐴𝐵) = 2. See §A for a discussion of

efficiently measuring this distance, including an extension to partial or weakly ranked ballots.

Using swap distance, we can investigate the extent to which vote profiles deviate from the solid

coalition assumption. Let us return to the nine Scottish elections and the slate B discussed above.

For every ballot cast in the election, we can compute its distance to the solid A-over-B ballot type

𝐴𝑠𝐵𝑟 . (Note that a solid vote of the opposite kind looks like 𝐵𝑟𝐴𝑠
, lying at distance 𝑟𝑠 .) For the

11
The reader should recall that MDS plots are simply low-distortion planar embeddings, which depend on a choice of

random seed. The 𝑥 and 𝑦 axes have no meaning; only the relative pairwise distances are meaningful with respect to the

data. We have verified that the structure of the plots stays the same for a few choices of random seed.
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Fig. 2. Top: Histograms showing the distribution of swap distances to solid A-over-B type in Aberdeen Ward
12 and Falkirk Ward 6, 2017. Bottom: Bubble plots showing the distribution of swap distances, where the area
of each circle is proportional to frequency. The top two colored rows show outputs from models introduced
in this paper, with parameters optimized to match the observed election. The third row in dark blue is the
observed election, for which the data exactly repeats the conventional histograms. The bottom three rows
show the best fit when voters are constrained to solid ballots, followed by samples under IC (impartial culture)
and IAC (impartial anonymous culture) models already popular in the social choice literature.

Aberdeen Ward 12 and Falkirk Ward 6 elections from 2017, these distances are summarized in the

histograms of Figure 2.

Next, we can attempt to generate profiles that are the best match for these histograms using the

models in §3.1. We can accomplish interesting results even with an undivided electorate (one bloc).
We choose our cohesion parameter by optimizing 𝜋𝐵 to minimize the 𝐿1 distance to the observed

election. The resulting distance distributions are visualized in the bubble plots of Figure 2 (and see

Appendix C for a full range of outputs). The traditional assumption of solid coalitions produces

distributions that are point masses at distances 0 and 𝑟𝑠 , which clearly have little in common with

the real-world ballot distributions. Both visually and in terms of measured 𝐿1 distance, the models

do well at matching observed patterns of non-solidity of coalitions.

3.2.3 Parameter interactions. Next, we leverage the generative models in combination with a voting

rule to produce simulations that highlight complex interactive effects between model parameters.

We vary 𝑁𝐵 over {.05, .15, . . . , .95} and we vary both 𝜋𝐴 and 𝜋𝐵 over {.55, .65, .75, .85, .95}. We

have selected four candidate strength scenarios for two blocs (based on the one-bloc scenarios in

§3.2.1); these are chosen to give a small window on how powerfully candidate strength can interact

with other factors.
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Fig. 3. Setting (𝑟, 𝑠, 𝑘) = (3, 3, 3), we independently vary the 𝐵 proportion of the electorate, the generative
model, the 𝐴 and 𝐵 cohesion, and the candidate strength settings. In this visualization, we have run 100 trials
for each parameter tuple, recording the number of B candidates elected for each simulated profile. The 𝑥 axis
position is the combined support for B (with respect to first-place votes) and the 𝑦-axis position is the average
number of seats over the trials with each tuple of parameters. The dashed lines show the proportionality
target rounded up and down to the nearest whole number of seats.

• UU both blocs have uniformly random preference order over each slate;

• UX: 𝐼𝐵𝐵 has a strong candidate while others are uniform;

• XX-same: 𝐴 and 𝐵 blocs strongly prefer the same B candidate and are otherwise uniform;

• XX-diff: 𝐴 and 𝐵 blocs strongly prefer different B candidates and are otherwise uniform.

In effect, we must make five choices for each batch of runs: model, strength scenario, population

share, cohesion for A voters, and cohesion for B voters. We then generate a batch of 100 profiles

from each 5-tuple to place each symbol on the plot. The 𝑥-axis position is the combined support

level for B candidates observed in the profiles, given by 𝑁𝐵 · 𝜋𝐵 + (1 − 𝑁𝐵) (1 − 𝜋𝐴) as above—so

, Vol. 1, No. 1, Article . Publication date: November 2024.



Proportionality for ranked voting, in theory and practice 13

a given support level can be achieved in many different ways. The 𝑦-axis position is the average

number of seats won by B candidates when the batch of profiles is run through the STV voting

rule.

Fig. 4. This time (𝑟, 𝑠, 𝑘) = (5, 5, 5). We again independently vary the 𝐵 proportion of the electorate, the
generative model, the 𝐴 and 𝐵 cohesion, and the candidate strength settings. In this visualization, we have
run 100 trials for each parameter tuple, recording the number of B candidates elected for each simulated
profile. The 𝑥 axis position is the combined support for B and the 𝑦-axis position is the average number of
seats over the trials with each tuple of parameters. The dashed lines show the proportionality target rounded
up and down to the nearest whole number of seats.

If the proportionality ideal were hit exactly, the symbols would all fall on the main diagonal. The

proportionality target rounded up and down to whole numbers of seats is shown with dotted lines

in the plots. For the most part, the data points fall within these proportionality targets.
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4 ASYMPTOTIC PROPERTIES
In this section, we give proof of concept that the framework presented here is robust enough

to admit provable statements about STV, a system of election for which theorems have so far

been elusive. The standard assumption of solid coalitions, in particular, has every voter rank all

candidates from one slate above all candidates from the other. This assumes away any role for

transfer between slates. Therefore, although the assumptions below are strong, they are hugely

more flexible than what has existed in the literature so far. In particular, the results of §4.1 fix the

candidate order within slates, but allow probabilistic crossover between slates.

The first aim of the results in this section is to show that the generative models let us formulate

and prove nontrivial quantitative results; beyond that, we can change one feature of the voting

system at a time and see how results differ, as in Proposition 4.1 vs. Proposition 4.2, where a small

change in how STV is tabulated can make a large difference. Corollary 4.4 is a surprisingly strong

numerical bound on the seats-to-votes ratio for large elections.

4.1 Single bloc asymptotics
In this section, we focus on the case of one bloc of voters and two slates of candidates. Note that

even with a single bloc the fact that we have two slates means any lack of cohesion immediately

leads to the richer types of crossover ballots that motivated our generative models.

For the Slate-PL and Name-PL models, we can prove theoretical results that offer a kind of

asymptotic generalization of the well-known Proportionality for Solid Coalitions (PSC). We give

asymptotics as the number of voters goes to infinity, since our models are probabilistic.

We start by giving bounds on the outcomes for a bloc voting under Slate-PL model. The results

reveal that the choice of precise method for tallying votes has a profound impact on the expected

outcomes. With that in mind, we define two different methods for deciding which candidates are

elected in each round of an STV vote tallying process.

• Simultaneous election: if multiple candidates exceed the threshold for election in a certain

round, they are all elected and their excess votes transfer down to the remaining candidates

before the next round.

• One-by-one election: if multiple candidates exceed the threshold for election in a certain

round, the one with the most votes is elected and their excess votes are transferred. The

tallying process then proceeds to the next round.

Based on the way that election results are reported by the city of Cambridge, it appears that

Cambridge follows the simultaneous election method.
12

Proposition 4.1 (Slate-PL, fixed order, simultaneous election). Consider an STV contest
with simultaneous election for 𝑘 open seats, a single bloc of 𝑁 voters, and two slates of candidates A
and B. Suppose that the voters vote according to a Slate-PL model and all voters rank the candidates
within each slate in a fixed order, 𝐴1 > 𝐴2 > · · · > 𝐴𝑘 and 𝐵1 > 𝐵2 > · · · > 𝐵𝑘 . (Further candidates
would therefore be irrelevant.) Write 𝛼 = 𝜋𝐴 and 𝛽 = 1 − 𝜋𝐴 for the tendency to support A and B
candidates, respectively, and assume 1

2
< 𝛼 < 1. Then the share of B candidates elected satisfies

1

2

− 1

2𝑘

(
𝛼

𝛽
− 1

)
≤ 𝑆𝐵 ≤ 1

2

a.a.s. as 𝑁 → ∞.

Thus, the share of B candidates elected approaches 1/2 with high probability as 𝑘, 𝑁 get large, even if
their support 𝛽 is very small.

12
See for instance https://www.cambridgema.gov/Election2023/Official/Council%20Round.htm
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Proof. In this proof, we will treat the ballot shares as deterministically equaling their expec-

tations, so that any strict inequalities we derive stay true with high probability as 𝑁 → ∞. First,

observe that the fixed order means that in a given round, only one𝐴 candidate and one 𝐵 candidate

has any first-place votes. The use of the Droop quota means that 𝑁 /(𝑘 + 1) votes is the threshold
of election; when a candidate reaches that threshold, they are elected and their excess votes are

transferred, leading to a reduction of the mass of total votes by 𝑁 /(𝑘 + 1); ballots can not be

exhausted because Slate-PL produces complete rankings. Until the full 𝑘 seats are elected, this

means that there is always enough vote mass to elect at least one candidate per round, and since

only two have first-place support, either one candidate is elected, or one 𝐴 and one 𝐵 are elected

simultaneously. Suppose that one candidate from each slate is elected in rounds 1, . . . , ℓ , but that

only one candidate is elected in round ℓ + 1; this must be an A candidate with high probability,

because 𝛼 > 𝛽 . So in round ℓ + 1, the support for B has dropped below threshold. Solving for ℓ , we

have (
1 − 2ℓ

𝑘 + 1

)
𝛽 ≥ 1

𝑘 + 1

;

(
1 − 2(ℓ + 1)

𝑘 + 1

)
𝛽 <

1

𝑘 + 1

,

and this gives

(𝑘 − 2ℓ − 1)𝛽 < 1 ≤ (𝑘 − 2ℓ + 1)𝛽 =⇒ 𝑘 − 𝛼

𝛽
− 1 ≤ 2ℓ < 𝑘 − 𝛼

𝛽
.

Thus there are at least
𝑘
2
− 𝛼

2𝛽
− 1

2
candidates from B elected, as claimed.

For the upper bound, note that the only round in which a single 𝐵 can be elected immediately

follows a round in which a single𝐴 was elected. This is because after one of each is elected (whether

this occurs simultaneously or in successive rounds), all first-place votes have been cleared and the

full mass of remaining ballots now favors the next 𝐴 candidate with a share close to 𝛼 . □

Figure 5 gives a visualization of Proposition 4.1. To obtain the exact 𝑁 → ∞ asymptotics plotted

in the figure, we allow a fractional number of ballots of each kind, and assume that the number of

ballots of each kind is exactly equal to the expectation under the model. We also assume that vote

transfers are fractional and deterministic.
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Fig. 5. A visualization of the lower bound and upper bounds in Proposition 4.1 for various values of 𝛽 .

It is somewhat surprising that, as 𝑘 → ∞, A and B are equally represented even though all

voters prefer A. Proposition 4.1 assumes simultaneous election transfers—this, together with the

fact that there are fixed rankings over A,B, creates a situation where in nearly every round all

first-place votes land on the top remaining A and B candidates, and both are elected.
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We now consider the one-by-one vote tallying method. A practical difference between the

simultaneous and one-by-one elections is that one-by-one election may exhibit a kind of leap-

frogging, where a candidate who is over the threshold in round 1 may nonetheless be elected after a

candidate who was below the threshold in round 1. This does not happen in simultaneous elections.

Proposition 4.2 (Slate-PL, fixed order, one-by-one election). Take the same setup assump-
tions as in the previous proposition except for using one-by-one election rather than simultaneous
election. Assume that log𝛼 (1/2) is not an integer. Let 𝛾 = ⌊log𝛼 (1/2))⌋, so that 𝛼𝛾 ≥ 1/2 but
𝛼𝛾+1 < 1/2. Then seat share 𝑆𝐵 for 𝐵 candidates satisfies

𝑘+2
𝛾+2 − 1

𝑘
≤ 𝑆𝐵 ≤ 1

2

− 𝛿 (𝑘 + 1)
𝑘

©­«
⌈ 2𝛼−1

𝑡
1−ℓ𝑡 −2𝛼 ln𝛼

⌉

1 + ⌈ 2𝛼−1
𝑡

1−ℓ𝑡 −2𝛼 ln𝛼
⌉
− 1

2

ª®¬ a.a.s. as 𝑁 → ∞.

for any 𝛿 ∈ [0, 1]. By setting 𝛿 =
√
𝑘−1√
𝑘

we obtain that as 𝑘 → ∞, the value 𝑆𝐵 to which 𝑆𝐵 tends
a.a.s. satisfies

1

𝛾 + 2

≤ 𝑆𝐵 ≤ 1

1 + ⌈ 2𝛼−1
−2𝛼 ln𝛼

⌉

Proof. Consider the tally after ℓ rounds. Let the share of all ballots (live or not) currently headed

by an𝐴 be 𝛼 ≤ 1− ℓ𝑡 . In the next round, the share of ballots headed by an𝐴 is (𝛼 − 𝑡)𝛼 . After round
ℓ + 𝑠 − 1, assuming only 𝐴 candidates have been elected since round ℓ , the share of ballots headed

by an𝐴 is 𝛼𝛼𝑠−1 − 𝑡𝛼𝑠−1 − · · · − 𝑡𝛼 . Since the total mass of ballots left at that stage is 1− (𝑠 − 1+ ℓ)𝑡 ,
it follows that the difference between the share headed by an 𝐴 and the share headed by a 𝐵 is

given by

Δ(𝑠) = 2𝛼𝛼𝑠−1 − 1 − 𝑡 (2𝛼𝑠−1 + · · · + 2𝛼) + 𝑡 (𝑠 − 1 + ℓ) (1)

= 2𝛼𝛼𝑠−1 − (1 − ℓ𝑡) − 𝑡

(
2𝛼 (1 − 𝛼𝑠−1)

1 − 𝛼
− (𝑠 − 1)

)
(2)

In particular, an 𝐴 will be elected next if and only if Δ(𝑠) is positive.
We define a sequence as a set of consecutive rounds consisting of electing 𝐴 candidates, followed

by a 𝐵 candidate. If ℓ = 0, then 𝛼 = 𝛼 . By Lemma 4.3, Δ(𝑠) ≤ 2𝛼𝑠 −1 for all 𝑠 ≤ 𝛾 , so Δ(𝑠) is negative
for 𝑠 = 𝛾 + 1. Thus the first sequence has length at most 𝛾 .

If round ℓ was the first round of some later sequence, then all ballots headed by an 𝐴 transferred

last round, so 𝛼 ≤ 𝛼 (1 − ℓ𝑡). Thus

Δ(𝑠) ≤ (1 − ℓ𝑡) (2𝛼𝑠 − 1) − 𝑡

(
2𝛼 (1 − 𝛼𝑠−1)

1 − 𝛼
− (𝑠 − 1)

)
and using Lemma 4.3 again, we have that this is negative for 𝑠 = 𝛾 + 1. Thus this sequence has

length at most 𝛾 + 1, since we allow for round ℓ to be the first round of the sequence.

Suppose there are 𝑟 sequences, followed possibly by electing a final set of 𝐴 candidates. The

best case for 𝐴 candidates is if this final set consists of 𝛾 + 1 𝐴 candidates. In that case there are

𝛾 + (𝑟 − 1) (𝛾 + 1) + 𝛾 + 1 = 𝑟 (𝛾 + 1) + 𝛾 𝐴 candidates elected and 𝑟 𝐵 candidates elected. Since

𝑘 = 𝑟 (𝛾 + 1) + 𝛾 + 𝑟 = (𝑟 + 1) (𝛾 + 2) − 2, we obtain

𝑆𝐴 ≤ 𝑘 − 𝑟

𝑘
=
𝑘 − 𝑘+2

𝛾+2 + 1

𝑘
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We now turn our attention to the lower bound. Suppose that we are in round ℓ at the start of a

sequence. By Lemma 4.3 and the fact that 𝛼 ≥ (1 − ℓ𝑡)𝛼 , we have

Δ(𝑠) ≥ 2(1 − ℓ𝑡)𝛼𝑠 − (1 − ℓ𝑡) − 𝑡 (2(𝑠 − 1) − (𝑠 − 1))
≥ 2(1 − ℓ𝑡) (𝛼𝑠 ln(𝛼) + (𝛼 − 𝛼 ln𝛼)) − (1 − ℓ𝑡) − 𝑡 (𝑠 − 1).

This last expression is decreasing in 𝑠 . The root of the expression is given by

𝑠 = 1 + 2𝛼 − 1

𝑡
1−ℓ𝑡 − 2𝛼 ln𝛼

Defining

𝜆(ℓ) := ⌈ 2𝛼 − 1

𝑡
1−ℓ𝑡 − 2𝛼 ln𝛼

⌉

we have that 𝜆(ℓ) is a lower bound on the number of 𝐴 candidates elected, starting at round ℓ ,

before a 𝐵 is elected.

Fix 𝛿 ∈ [0, 1]. Since a candidate is elected every round, there are 𝑘 rounds total. Suppose that

𝑚 is the number of rounds contained in sequences whose first round is before or equal to round

⌊𝛿 (𝑘 + 1)⌋, so that in particular,𝑚 ≥ ⌈𝛿 (𝑘 + 1)⌉. The fraction of these𝑚 rounds in which an 𝐴 is

elected is at least 𝜆(𝛿 (𝑘 + 1))/(𝜆(𝛿 (𝑘 + 1)) + 1). Since an 𝐴 is elected in round𝑚, an 𝐴 is elected in

at least half of the remaining 𝑘 −𝑚 rounds. Thus the seat share for 𝐴 satisfies

𝑆𝐴 ≥ 1

𝑘

©­«𝑚 ·
⌈ 2𝛼−1

𝑡
1−ℓ𝑡 −2𝛼 ln𝛼

⌉

1 + ⌈ 2𝛼−1
𝑡

1−ℓ𝑡 −2𝛼 ln𝛼
⌉
+ 𝑘 −𝑚

2

ª®¬
≥ 1

𝑘

©­«𝛿 (𝑘 + 1) ·
⌈ 2𝛼−1

𝑡
1−ℓ𝑡 −2𝛼 ln𝛼

⌉

1 + ⌈ 2𝛼−1
𝑡

1−ℓ𝑡 −2𝛼 ln𝛼
⌉
+ 𝑘 − 𝛿 (𝑘 + 1)

2

ª®¬
=
1

2

+ 𝛿 (𝑘 + 1)
𝑘

©­«
⌈ 2𝛼−1

𝑡
1−ℓ𝑡 −2𝛼 ln𝛼

⌉

1 + ⌈ 2𝛼−1
𝑡

1−ℓ𝑡 −2𝛼 ln𝛼
⌉
− 1

2

ª®¬
□

Lemma 4.3. Let 𝛼 ∈ [0.5, 1) and 𝑠 ∈ N.
(a) 2𝛼𝑠 ≥ 2𝛼𝑠 ln𝛼 + 2(𝛼 − 𝛼 ln𝛼).
(b) If 1 ≤ 𝑠 ≤ log𝛼 (1/2) + 1, then

𝛼 (1 − 𝛼𝑠−1)
1 − 𝛼

≤ 𝑠 − 1 ≤ 2𝛼 (1 − 𝛼𝑠−1)
1 − 𝛼

Proof. (a) Follows by considering the tangent line to 𝑓 (𝑠) = 2𝛼𝑠 at 𝑠 = 1. (b) For the left hand

bound, notice that since 𝛼 < 1,

𝛼 (1 − 𝛼𝑠−1)
1 − 𝛼

< (1 + 𝛼 + . . . + 𝛼𝑠−2) ≤ (𝑠 − 1)

For the right hand bound, we have

2𝛼 (1 − 𝛼𝑠−1)
1 − 𝛼

− (𝑠 − 1) ≥ 2𝛼 − 𝛼𝑠

1 − 𝛼
− log𝛼 (1/2) ≥

𝛼

1 − 𝛼
− log𝛼 (1/2)

The last expression is zero for 𝛼 = 1/2 and a derivative test shows that it is positive for all

𝛼 ∈ (0.5, 1). □
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Figure 6 contains a visualization of Proposition 4.2 using the same method to compute exact

asymptotics as in Figure 5.

Fig. 6. Visualizations of the lower and upper bounds given by in Proposition 4.2 for 𝑘 = 5, 10, 100, 500 and
𝛿 = (

√
𝑘 − 1)/

√
𝑘 . The dotted line is 1 − 𝜋𝐴 , which is also B’s combined share since there is no bloc B.

The preceding propositions let us assess the extent to which STV is likely to yield proportional

representation in large elections, if the voters all adhere to a rigid ordering of candidates.

Corollary 4.4 (Bounding disproportionality for STV with fixed candidate orders).

Suppose we consider STV under the same conditions as above (slate-PL, fixed candidate order, sufficiently
large 𝑘). Then under simultaneous election, disproportionality can get arbitrarily severe as the election
gets large. However, under one-at-a-time election, the asymptotic ratio of seats to votes for the minority
party satisfies

2

3

≤ 𝑆𝐵

𝛽
≤ 2,

where 𝛽 is the support for 𝐵 candidates.

Proof. Simultaneous election means that B candidates will tend toward 1/2 seat share, no matter

their level of support from voters.

Working with the asymptotic value for 𝑁 → ∞ for one-by-one election, we have, as 𝑘 → ∞,

𝑆𝐵/𝛽 ≥ 1

(1 − 𝛼)
(
ln(1/2)
ln𝛼

+ 2

)
which is an increasing function of 𝛼 ∈ [0.5, 1) and at 𝛼 = 0.5 achieves a minimum of 2/3. For the
upper bound, we have

𝑆𝐵/𝛽 ≤ 1

(1 − 𝛼)
(
1 + 2𝛼−1

−2𝛼 ln𝛼

)
which has a supremum of 2 for 𝛼 ∈ [0.5, 1).

□

Finally, when one bloc votes by Name-PL, asymptotic results are easy to describe for extreme

candidate strength scenarios, assuming there are more candidates in each slate than seats open,

and equal numbers of candidates in each slate.

Proposition 4.5 (Name-PL). For ballots generated by a Name-PL model, the STV winners (with
either vote tallying process) are (a.a.s.) the top candidates by support value, up to a choice about how to
break ties between equally supported candidates. Thus we obtain the following results a.a.s. as 𝑁 → ∞.
Without loss of generality, assume the preference for A candidates is 𝛼 ≥ 1/2.
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(a) If there are strong preferences within slates, so that 𝛼𝑎1 > (1 − 𝛼)𝑏1 > 𝛼𝑎2 > (1 − 𝛼)𝑏2 > · · · ,
then the number of A and B candidates elected is equal or within one, no matter the value of 𝛼 .

(b) On the other hand, if the support is divided uniformly within slates and 𝛼 > 1/2, then only 𝐴
candidates are elected.

Proof. To prove the first statement, consider a Plackett-Luce model with probability vector

(𝑐1, . . . , 𝑐𝑘 ). For any partial ranking of candidates 𝜎 ′ = (𝐶1 > 𝐶2 > . . . > 𝐶ℓ ), meaning𝐶1 is the first

choice and so on, let 𝐹 (𝜎 ′, 𝑖) be the proportion of ballots which begin with𝐶1 > 𝐶2 > . . . > 𝐶ℓ > 𝐶𝑖 .

Asymptotically almost surely, if 𝑖, 𝑗 ∉ 𝜎 ′
, we have 𝑐𝑖 < 𝑐 𝑗 =⇒ 𝐹 (𝜎 ′, 𝑖) < 𝐹 (𝜎 ′, 𝑗). It follows that,

initially, the candidates with the most first-place votes are (a.a.s.) those with the highest support

values. Moreover, after vote transfers, the candidates with the most first places will be (a.a.s.) those

remaining candidates (not yet elected or eliminated) with the highest support values. This proves

the main statement, and (a) and (b) follow. □

4.2 Two-bloc asymptotics with fixed candidate order
We conclude our consideration of electoral outcomes with an observation that the asymptotics

of two-bloc elections for the one-by-one variant of STV interpolate between solid coalitions and

unpolarized voting in an intuitive way. (See Figure 7.)
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Fig. 7. Exact asymptotics (as the number of voters gets large) showing the share of seats won by the 𝐴 bloc
as their vote share and cohesion varies. The elections have𝑚 = 10, 20, 100 seats, with an inexhaustible supply
of candidates. We use the Slate-PL model, suppose both blocs use the same fixed ordering over A and B and
apply the one-by-one election variant of STV defined in §4.

One interesting (and real) artifact visible in these plots is that the outcome with seat share of 50%

is a plateau that occurs for a range of cohesion values. To get an idea of the reason for this, note that

since this plot assumes both blocs use a fixed candidate order 𝐴1, 𝐴2, . . . and 𝐵1, 𝐵2, . . . , the first

candidate elected with 𝜋𝐴, 𝑁𝐴 > .5 will always be𝐴1. For large numbers of seats, where the election

threshold is close to zero, there is a phase transition when 𝜋2 = (1 − 𝜋) + 𝜋 (1 − 𝜋), occurring at
𝜋 = 1/

√
2 ≈ .707, that determines whether the first transfer results in the election of𝐴2. For smaller

𝜋 , enough support will transfer to 𝐵1 that they are next to be elected. Similar polynomial thresholds

determine how many 𝐴 candidates are elected between successive 𝐵 candidates. For 𝜋 approaching

1/2, the order of election will alternate 𝐴𝐵𝐴𝐵𝐴𝐵 . . . , giving 1/2 seat share to each side.
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5 CONCLUSION AND FUTUREWORK
In §3.2.2 we make first steps toward fitting models and parameters to realistic elections, with

immediate payoff in a starkly improved correspondence to Scottish ranked elections than solid

coalitions could offer. A more comprehensive fitting effort along these lines—simultaneously

learning optimal blocs and slates from observed elections—is a natural future project. This would

also point the way to new methods of measuring the degree of polarization, which can feed back

usefully into voting rights law.

Our goal in this paper is to lay the groundwork to systematically study the tendency of systems

to deliver more or less proportional outcomes for voters. Crucially, the framework we propose

allows but does not require party labels, so that we can also identify emergent blocs with similar

voting behavior after an election has been conducted. Finally, the new generative models outlined

here can be theoretically explored, opening up rich directions for mathematical study, but can also

give decision-makers a powerful toolkit for practical electoral reform.
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A SWAP DISTANCE AND BALLOT COMPLETION
The distance between two (complete) ballots measures the complexity of swaps to turn one ballot

into the other. We will generalize this to ballot types (where candidates within each slate are

indistinguishable from one another). We will allow swaps of individual neighboring candidates at

unit cost as a special case of general individual swaps, whose cost is the difference in their positions.

For instance, though ballot 𝐴𝐵𝐶 could be transformed to 𝐶𝐵𝐴 with three neighbor-swaps, its total

cost will be just 2 because 𝐴 and 𝐶 can be exchanged directly, leaving 𝐵 in place. To calculate this

efficiently, we adapt a lemma from a preprint of Duchin and Tapp [2024]. Given an ordering of

candidates, let the score vector sc of a ballot be defined as the vector of Borda scores earned by

each candidate, so for the candidate order 𝐴, 𝐵,𝐶 we have

sc(𝐴𝐵𝐶) = (3, 2, 1); sc(𝐶𝐵𝐴) = (1, 2, 3).
This admits a natural generalization to score vectors for incomplete ballots and weak orders over

candidates; unmentioned candidates are regarded as being tied at the end of the ballot, and ties

are handled as averages. There is also a merge/unmerge move for ballots with ties: merging or

unmerging two sets in neighboring ballot positions costs one-half of the product of the set sizes.

(Neighbor swaps are a special case realized by one merge and one unmerge.)

If the types are A and B, let the score vector by type, denoted sc
𝐴 |𝐵

, report each candidate’s

score as the average over its type, so that for an election with (𝑟, 𝑠) = (2, 3) (i.e., A = {𝐴1, 𝐴2} and
B = {𝐵1, 𝐵2, 𝐵3}), we have

sc
𝐴 |𝐵 (𝐴𝐴𝐵𝐵𝐵) = (9/2, 9/2 | 2, 2, 2), sc

𝐴 |𝐵 ({𝐴,𝐴}, {𝐵, 𝐵, 𝐵}) = (9/2, 9/2 | 2, 2, 2),

sc
𝐴 |𝐵 (𝐴𝐵𝐵𝐴𝐵) = (7/2, 7/2 | 8/3, 8/3, 8/3), sc

𝐴 |𝐵 (𝐴𝐵{𝐴, 𝐵, 𝐵}) = (7/2, 7/2 | 8/3, 8/3, 8/3).
Here, the first two are sorted with A candidates before B candidates, and either of the second

two can be sorted by moves incurring swap distance 2.

Lemma A.1 (Duchin–Tapp). Swap distance on ballots can be calculated as an 𝐿1 vector difference,
as can the distance of a ballot type to being sorted. For ballots 𝑏1, 𝑏2,

dist(𝑏1, 𝑏2) =
1

2

∥sc(𝑏1) − sc(𝑏2)∥1 ;

for a ballot type 𝜎 ,

dist (𝜎, (A,B)) = 1

2




sc𝐴 |𝐵 (𝜎1) − sc𝐴 |𝐵 (A,B)




1

.

This is the distance to sorted that was used as a summary statistic of elections in §3.2.2.
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B MORE MDS PLOTS

Fig. 8. Multi-dimensional scaling (MDS) plots for profiles with 𝑟 = 𝑠 = 3 (3 candidates per bloc), under a
variety of generative models and candidate strength scenarios. Each model is designated by a different color,
and the candidate strength scenarios are denoted U, S, X, Y, as described above. The pairwise distances
between profiles are computed with 𝐿1 distance on the profiles. Each preference profile has 1000 ballots,
and we have generated 10 profiles by each of the 16 model/strength pairs. As 𝜋𝐵 → 1, the main difference
appearing in the models is that the BT and PL profiles become tightly clustered for each candidate strength
scenario, while the CS profiles remain more variable.
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C FITTING TO SCOTTISH ELECTIONS

Fig. 9. Histograms showing the distribution of swap distances to solid A-over-B ballots in nine Scottish
elections.

To conclude, we provide a full sweep of fitting outputs across the nine elections and various

models in this paper. All simulations use the same number of ballots as in the observed election.

Plots for all elections and models follow.
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Fig. 10. Bubble plots showing the distribution of swap distances from our generative models, classical models,
and a real election to A-over-B ballots. Both the generative models and solid-bloc election are optimized via a
grid search to choose a value for 𝜋𝐵 that minimizes 𝐿1 to the real Aberdeen Ward 12 2017 election.
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Fig. 11. Bubble plots showing the distribution of swap distances from our generative models, classical models,
and a real election to A-over-B ballots. Both the generative models and solid-bloc election are optimized via a
grid search to choose a value for 𝜋𝐵 that minimizes 𝐿1 to the real Aberdeen Ward 12 2022 election.
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Fig. 12. Bubble plots showing the distribution of swap distances from our generative models, classical models,
and a real election to A-over-B ballots. Both the generative models and solid-bloc election are optimized via a
grid search to choose a value for 𝜋𝐵 that minimizes 𝐿1 to the real Angus Ward 8 2012 election.
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Fig. 13. Bubble plots showing the distribution of swap distances from our generative models, classical models,
and a real election to A-over-B ballots. Both the generative models and solid-bloc election are optimized via a
grid search to choose a value for 𝜋𝐵 that minimizes 𝐿1 to the real Clackmannanshire Ward 2 2012 election.
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Fig. 14. Bubble plots showing the distribution of swap distances from our generative models, classical models,
and a real election to A-over-B ballots. Both the generative models and solid-bloc election are optimized via a
grid search to choose a value for 𝜋𝐵 that minimizes 𝐿1 to the real Falkirk Ward 6 2017 election.
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Fig. 15. Bubble plots showing the distribution of swap distances from our generative models, classical models,
and a real election to A-over-B ballots. Both the generative models and solid-bloc election are optimized via a
grid search to choose a value for 𝜋𝐵 that minimizes 𝐿1 to the real Fife Ward 21 2022 election.
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Fig. 16. Bubble plots showing the distribution of swap distances from our generative models, classical models,
and a real election to A-over-B ballots. Both the generative models and solid-bloc election are optimized via a
grid search to choose a value for 𝜋𝐵 that minimizes 𝐿1 to the real Glasgow Ward 16 2012 election.
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Fig. 17. Bubble plots showing the distribution of swap distances from our generative models, classical models,
and a real election to A-over-B ballots. Both the generative models and solid-bloc election are optimized via a
grid search to choose a value for 𝜋𝐵 that minimizes 𝐿1 to the real North Ayrshire Ward 1 2022 election.
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Fig. 18. Bubble plots showing the distribution of swap distances from our generative models, classical models,
and a real election to A-over-B ballots. Both the generative models and solid-bloc election are optimized via a
grid search to choose a value for 𝜋𝐵 that minimizes 𝐿1 to the real Renfrewshire Ward 1 2017 election.
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