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Proportionality for ranked voting, in theory and practice

AUTHORS REDACTED
Classical social choice theory includes a long list of criteria, or fairness axioms, for elections where individuals

rank their preferences. Famous impossibility theorems from the 1970s concern the properties of voting rules

to convert profiles of ranked preferences to winner sets. But though public perceptions of fairness are strongly

keyed to proportional representation, notions of proportionality are strikingly missing from the standard roster

of fairness axioms. We design a framework to measure the degree of proportionality of seats to voter preference
under a wide class of systems for electing legislative bodies, even when elections are conducted without party

labels. We begin by building out a set of generative models for creating synthetic ranked preference profiles,

with an emphasis on flexibility and realism; in particular, we can efficiently generate polarized elections with

properties motivated by the extensive body of work on racially polarized voting in the United States. The

models use notions of blocs of voters and their slates of preferred candidates, which need not be known to

voters but could be implicit in their voting patterns. The models serve as a thought tool for building a new

definition of proportional representation and provide a framework that allows researchers to compare systems

of election in terms of their tendency to produce proportional outcomes. We illustrate this by giving both

empirical and theoretical results for single transferable vote (STV) elections.

This work brings a statistical modeling toolkit to the questions around ranked choice voting and propor-

tionality. At the same time, it builds a much-needed bridge from computational social choice theory to political

science, where degrees of proportionality have been intensely studied for well over a century, and to the work

of practitioners in current reform efforts around voting rights and democracy.
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Proportionality for ranked voting, in theory and practice 1

1 INTRODUCTION
In this paper, we give what we believe to be the first definition of the degree of proportionality of votes
to seats that is general enough for use with ranked preferences.1 This fills a gap in the classical social

choice literature. Ken Arrow’s foundational work studied social choice functions that combine

multiple input rankings into one output ranking; following this, a series of important results were

conjectured and proved from the 1960s to the 1990s concerning the use of rankings to output

winner sets. Impossibility theorems of Müller–Satterthwaite, Gibbard–Satterthwaite, and Duggan–

Schwartz rule out the viability for single-winner or multi-winner elections of simultaneously

securing multiple axioms of fairness (see, for instance, [Taylor, 2002]). Examples of fairness axioms

from early social choice theory include strategy-proofness, monotonicity, and the Condorcet

criterion. However, these simply do not rank high in the public discourse around democracy.

Another area of need in the computational social choice literature is in defining generative

models of election using domain knowledge of real-world electoral dynamics. We construct novel

generative models of ranking that are inspired by polarized elections in real-world settings; in

particular, voting rights law in the United States has used notions of voting blocs and their degrees

of cohesiveness for decades. With these models and data, we can test voting rules on both real

and synthetic preference profiles, yielding information—some provable and analytic and some

qualitative and simulation-based—on whether roughly proportional outcomes do indeed tend to

result from so-called "semi-proportional" systems.

1.1 Contributions
New generative models. Generative models of voting use parameters and data—in our case,

historical voting patterns, demographics, cohesion parameters, and candidate strength—to build

a probability distribution from which ballots are sampled and elections can be simulated. In this

paper we build and test generative models. These are the first mechanisms for producing ranked

ballots that incorporate polarization according to candidate slates.

Rethinking proportionality. The proportionality of representation for a subgroup of voters could

have a very simple interpretation in demographic terms (the group’s seat share is in line with its

share of the electorate). However, this fails to account for any complexity in the voting patterns

of that group and the complementary voters. We define a framework that replaces demographic

proportionality for a bloc of voters with support proportionality for a slate of candidates: the slate’s

seat share should be in line with the combined support for its candidates. We note that this kind

of proportional representation is broader than that of PR systems such as party list voting, which

secure support proportionality—on the basis of party only—by construction, so that the finding of

proportional outcomes is vacuous in that setting. Here, we are measuring a kind of proportionality

that is endogenous or emergent with respects to votes cast, and can be measured not only on the

basis of party but with respect to any other cohesive preference.

Incorporating domain knowledge. This project engages domain knowledge in voting rights law

and practice in multiple ways. First, we shift the definition of voter cohesion to match the ordinary

and legal use of the term. In the social choice literature, definitions of cohesive groups of voters
tend to revolve around overlapping approval ballots: for instance, Sánchez-Fernández et al. [2017]

call a group of voters ℓ–cohesive, where 𝑛 candidates are running for 𝑘 seats, if they comprise

at least ℓ𝑛/𝑘 people and their preferences overlap in at least ℓ candidates. This nuances earlier

notions in which "cohesion" requires only a non-empty overlap in approvals. By contrast, this

paper introduces notions of cohesiveness keyed to the probability of members of a group to support

1
All other notions we are aware of work by recourse to approval ballots, as we describe further below.
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candidates from a certain slate. Compare this to, for instance, the landmark Thornburg v. Gingles
decision of the U.S. Supreme Court, requiring Voting Rights Act plaintiffs to ascertain "whether

members of a minority group constitute a politically cohesive unit" by measuring whether "a

significant number of minority group members usually vote for the same candidates."
2
Expert work

supporting a finding of cohesiveness revolves around "statistical evidence of voting patterns" using

past elections, and polarization is typically summarized by using standard inference techniques to

estimate the share of support for slates of candidates by blocs of voters [Hebert et al., 2010]. The

authors of the present paper are drawing on just this kind of experience in voting rights expert

work.
3

Secondly, definitions related to justified representation are far from notions of proportionality

in the political science literature and the popular vernacular: seat share in line with vote share.

The relationship of seat share to vote share has been intensely studied at least since the late 19th

century, and measurement of deviation from ideal seats/votes curves has generated a significant

literature in the last fifty years especially in the work of Tufte, King, Grofman, and many more.

Finally, our use of ranked ballots rather than approval ballots is aligned with practice (and reform

momentum) in the United States and internationally. Several U.S. states have recently debated

adoption of ranked choice elections: Maine and Alaska now use ranked voting for statewide

elections, with Nevada midway through the process of enacting a shift. Dozens of cities from San

Francisco to Minneapolis use ranked choice for municipal elections, and New York City recently

switched to ranked choice to elect city councillors and the mayor. Outside of the U.S., ranked

choice voting is used for local or legislative elections in much of the Anglophone world—including

Scotland, Ireland, New Zealand, and Australia—as well as for parliamentary elections in Malta and

Papua New Guinea.

Illustrating with STV. While our notion of proportionality and the generative models we propose

do not rely on a specific voting rule, we will use single transferable vote (STV) as a test case. STV is

a family of voting rules within ranked choice voting, using a transfer mechanism for selection of

multiple winners, where the number of seats to be filled in a single contest is called the magnitude.
In STV elections, there is a threshold level of support needed to be elected—typically the threshold is

about 1/(𝑘+1) of the first-place votes, where 𝑘 is the magnitude. The election is conducted in rounds.

As candidates are either elected (by passing the threshold) or eliminated from contention, the

(surplus) votes supporting those candidates are transferred to the next options on their respective

ballots.
4
We note that instant runoff voting or IRV, an extremely popular alternative in practice, is

the same voting rule as STV in the special case 𝑘 = 1.

Though STV is the basis for the examples in this paper, the express goal of the work is to set up

a framework suitable for the comparative study of any voting rules.
5

Important note: links to data and code used to produce the examples and data visualization in this
paper have been suppressed for anonymization purposes, and will be provided in a full replication repo
after the paper is reviewed.

2Thornburg v. Gingles (1986), https://www.oyez.org/cases/1985/83-1968.

3
For instance, consider recent expert work in Texas: minority racial groups were estimated to collectively support Democratic

candidates in general elections from 2012–2020 at rates of 85-92%, while white voters supported Republican candidates at rates

of 75-85% in the same contests. Expert report of redacted, TX NAACP et al. v. Abbott, Case No. 1:21-CV-00943-RP-JES-JVB.
4
Specific mechanics vary; in this paper we have implemented the vote-tallying mechanism used by Cambridge, MA for its

City Council elections, except as noted below.

5
When single-winner rules like IRV are used to elect a representative body, as in the New York City Council, the framework

here will be applicable.

, Vol. 1, No. 1, Article . Publication date: April 2024.
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Proportionality for ranked voting, in theory and practice 3

1.2 Related work
Statistical ranking models, or models that assign a probability to permutations on a set of elements,

have been studied at least since the early 20th century, going back to Thurstone [1927]. Subsequent

models include those introduced by Bradley and Terry [1952] and Plackett [1975], which form the

basis for the BT and PL models in this paper, respectively. Benter [2008] introduced a variation of the

Plackett model with a dampening parameter to account for less careful deliberation of lower-ranked

items. Johnson et al. [2002] proposed a model to combine rankings that were determined by several

different sources—which could have used different methods and criteria—into an aggregate, or

meta, ranking scheme.

Ranking models have been used in a variety of applications in the broader social science literature.

Stern [1990] apply themethods to horse races, where themarginal probability of each horse finishing

first is known in advance. Bradlow and Fader [2001] apply time series models to Billboard "Hot

100" list, to show how song rankings change over time. Graves et al. [2003] apply a combination

of ranking models to racecar competition outcomes. In the area of election analysis, Upton and

Brook [1975] fit a Plackett model to ranked ballots in London elections to determine the effect of

candidate name ordering on the ballots, also known as positional bias. Gormley and Murphy [2008]

fit a combination of Plackett-Luce and Benter models to polling data from Irish elections in 1997

and 2002. In particular, they find the models to be effective in identifying voting blocs (groups of

voters with similar ranked preferences) within the electorate. In the same paper, the authors fit

mixtures of Plackett-Luce models to cast vote records from Irish elections, with the main goal of

identifying blocs within the electorate.
6
These analyses are descriptive, based on historical data.

In a recent paper, Garg et al. [2022] model outcomes of elections in multi-member Congressional

districts under a solid coalition assumption, which means that the ballots are effectively unranked

(and do not differentiate candidates within each coalition).

Our work is related in several respects to the existing computational social choice literature. There

is a large body of work on the axiomatic properties of voting rules in various settings, including

notions with a family resemblance to proportionality. For example, defining (extended) justified

representation (JR) [Aziz et al., 2017] allows certain guarantees in approval-based multi-winner

voting: sufficiently large groups whose approvals have non-trivial overlap can’t be shut out of

the winner set. Refer to Lackner and Skowron [2022] for a more thorough discussion. Various

papers have used proportionality language for functions that map approval ballots to ranked

outcomes [Skowron et al., 2017] and, quite recently, for functions that carry ranked ballots to sets

of approval ballots, and from there map to multi-winner outcomes [Brill and Peters, 2023]. While

similar in spirit, it would be difficult to compare ideas invoking justified representation to ours

directly because the JR family of axioms relies on a fundamentally different definition of cohesion.

In terms of generative models of election, numerical experiments in this literature traditionally

rely on assumptions of impartial culture [Pritchard and Wilson, 2009], under which voters are

independent and every permutation of candidates is equally likely, impartial anonymous culture, in
which Lebesgue measure is used to set relative preferences, or use spatial or distance-based models

[Elkind et al., 2017, Tideman and Plassmann, 2010]. See Szufa et al. [2022, 2020] for a comparison

of common statistical cultures and recent discussion of how to sample approval elections.

Spatial models [Enelow and Hinich, 1984], in particular, which represent voters (and candidates)

as ideal points in a metric space—in other words, using a space with a distance function as the

latent space for voter preferences—are common across fields. Voters are presumed to vote either

6
In the language that will be introduced below, this roughly corresponds to fitting a Name-PL model (see Remark 4) with

unknown group sizes and no slate structure. That is, their method is designed to learn preferences for all candidates by each

of two blocs. Fitting a mixture model in this way does not produce a canonical division of candidates into slates.
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deterministically for their closest representatives or probabilistically (upweighting closer candi-

dates) [Burden, 1997]. Two commonly used methods for estimating ideal points (typically from

Congressional roll-call data) are NOMINATE [Poole and Rosenthal, 1985] and IDEAL [Clinton et al.,

2004]. Ranked choice voting models can be built from spatial models. For example, Gormley and

Murphy [2007] combine a spatial and Plackett-Luce model to analyze Irish STV elections (discussed

further in §5), and Kilgour et al. [2020] use a spatial model (where voters rank by proximity) to

measure the effect of ballot truncation on single-winner ranked choice outcomes. Garg et al. [2022]

also use a spatial model in one section, with voter ideal points extracted from ideology ratings in

a commercial voter file, to relate the "diversity" of elected officials to the sizes of multimember

districts.

Spatial models on one hand, and approval votes on the other, are favored by the mathematically

inclined because they lend themselves to provable theoretical properties of voting rules. For example,

under the implicit utilitarian voting framework, ordinal votes are proxies for underlying utilities

and the distortion of a voting rule captures its worst-case loss compared to having full information

[Procaccia and Rosenschein, 2006]. Anshelevich et al. [2018] study the distortion of STV under

metric preferences, and Gkatzelis et al. [2020] recently settled a well-known conjecture on the

optimal metric distortion when aggregating rankings to elect a single winner.

Our goal is to strike out in a new direction, with definitions that enable new questions to surface.

2 BLOCS, SLATES, AND PROPORTIONALITY
2.1 Defining blocs, slates, and notions of preference
The concept of blocs and slates is straightforward: slates are disjoint sets of candidates, such that

voter propensity to support the various slates can be measured. The idea that voters would exhibit

a preference among slates makes sense for an electorate overall, or when split out into disjoint

groups of voters we call blocs.
To make this precise, we must delineate what it means for the preference profile consisting of

ranked votes from a group of voters to display an overall preference for one group of candidates over

another. We list several notions of preference or propensity that can be measured in an observed

vote profile—that is, these are measurements that can be made on any cast vote record that has

been minimally cleaned so that each ballot is a partial ranking (a permutation of a subset of the

candidates).

Definition 2.1. Suppose an election is conducted with bloc structure (𝐴,A, 𝐵,B) consisting of
sets of voters 𝐴, 𝐵 and corresponding slates of candidates A = {𝐴1, . . . , 𝐴𝑟 } and B = {𝐵1, . . . , 𝐵𝑠 }.
We adopt the viewpoint of bloc 𝐵, which may be the whole electorate (the 𝐴 = ∅ case). Suppose

voters are allowed to rank up to 𝑛 ≤ 𝑟 + 𝑠 candidates on their ballots—that is, ballots may be

incomplete rankings of varying length, up to some maximum.

• Bloc 𝐵 prefers slate B with first-place preference 𝑝𝐵 if the share of first-place votes in the

profile for B candidates is 𝑝𝐵 .

• Bloc 𝐵 prefers slate B with positional preference 𝑃𝐵 = (𝑝1, 𝑝2, . . . , 𝑝𝑛) if the share of ballots
placing an B candidate in position 𝑖 (among those for which a vote is cast and neither slate

was exhausted in the higher positions) is 𝑝𝑖 . In particular, the special case of consistent
positional preference 𝑝𝐵 corresponds to 𝑃𝐵 = (𝑝𝐵, 𝑝𝐵, . . . , 𝑝𝐵).

• Given a positional scoring rule with weights (𝑤1,𝑤2, . . . ,𝑤𝑛), we say that 𝐵 prefers slate

B with score preference 𝑝𝐵 if the share of their score for B candidates is 𝑝𝐵 . The default

option will be to give standard Borda weights to the top 𝑘 ranks via the score vector

(𝑘, 𝑘 − 1, . . . , 1, 0, . . . , 0) in a magnitude-𝑘 election; we will refer to this as (top-𝑘) Borda

, Vol. 1, No. 1, Article . Publication date: April 2024.
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Proportionality for ranked voting, in theory and practice 5

preference. For the purpose of Borda scoring, incomplete ballots are completed with an

averaging convention (see A).

Preferences for the 𝐴 bloc are defined analogously; the only difficulty in extending to more than
two blocs is one of cumbersome notation.

We will interpret each of these preference parameters as an indication of how cohesive bloc 𝐵 is,

with higher preference parameters (closer to 1) indicating more strongly aligned blocs.

Example 2.2. Suppose an election has been conducted with 𝑟 = 3, 𝑠 = 2, 𝑛 = 5 (i.e., complete

rankings are allowed), and suppose the voters are labeled as 𝐴 voters or 𝐵 voters. Suppose that the

summarized preference profile for the 𝐵 bloc is given by

(by name)

×2 ×3 ×8 ×1 ×5 ×3 ×5
𝐵1 𝐵1 𝐵1 𝐴1 𝐵2 𝐵2 𝐵1

𝐵2 𝐴2 𝐵2 𝐵1 𝐵1 𝐴3 𝐵2

𝐴1 𝐵2 𝐴2 𝐵2 𝐴1 𝐴1

𝐴2 𝐴3 𝐴1 𝐴3 𝐵2

𝐴3 𝐴2 𝐴2 𝐴2

i.e.,

(by slate)

×7 ×3 ×8 ×1 ×3 ×5
𝐵 𝐵 𝐵 𝐴 𝐵 𝐵

𝐵 𝐴 𝐵 𝐵 𝐴 𝐵

𝐴 𝐵 𝐴 𝐵 𝐴

𝐴 𝐴 𝐴 𝐵

𝐴 𝐴 𝐴

Then the first-place preference of the 𝐵 bloc for B candidates is 26/27, the positional preference
is ( 26

27
, 21
27
, 4
7
, 3
3
,−), the Borda preference to all five places is 232/405 with ballot completion, and

the top-2 Borda preference is 73/81. Note that the last few positional scores are 4/7, 3/3, and
undefined—rather than 4/22, 3/21, and 0—because of only considering ballots which have not

exhausted the 𝐵 candidates.

2.2 Defining proportionality
If the electorate is undivided (𝐴 = ∅) and the voters support slate B with propensity 𝜋𝐵 , then we

interpret that as voters giving the slate 𝜋𝐵 share of their support. In this case, the proportionality

ideal is extraordinarily simple: seat share equals vote share, i.e.,

𝑆𝐵 = 𝜋𝐵 .

When there are two distinct blocs with different voting behavior that partition the whole

electorate, this extends by convex combination to a natural heuristic for a proportional outcome of

an election. If 𝜋𝐵 is the preference parameter for bloc 𝐵 towards its candidates and likewise 𝜋𝐴 for

bloc 𝐴, then a natural target is to have the seat share 𝑆𝐵 for the B slate satisfy

𝑆𝐵 = 𝑁𝐵 · 𝜋𝐵 + (1 − 𝑁𝐵) (1 − 𝜋𝐴),
where 𝑁𝐵 is the share of voters from the 𝐵 bloc. That is, the combined support for B candidates is

the size of the 𝐵 bloc times its level of cohesion (the propensity to vote for B candidates) plus the

size of the complementary bloc times its level of crossover voting (again, the propensity to vote for

B candidates).
7

This enables us to say, for instance, whether a particular election outcome was near-proportional

(in a given bloc structure, if applicable) with respect to first-place preferences, or to Borda prefer-

ences, or any other notion of propensity. Proportionality is not a foregone conclusion for ranked

choice voting even in the extremely simple case where the blocs are defined by first-place votes;

lower-ranked choices may or may not track closely with first-place preference.

7
One could consider alternative definitions of proportionality, for example, based on a bloc-weighted combination of the

number of seats a slate wins in each of the hypothetical elections in which only one of the blocs participates. However, this

requires fixing a voting rule. We deliberately propose a notion of proportionality that is agnostic to the choice of voting rule.

, Vol. 1, No. 1, Article . Publication date: April 2024.



295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

6 Authors Redacted

first place pref. top-𝑘 Borda share

STV

election (𝑟, 𝑠, 𝑘) 𝜋𝐵 proportionality 𝜋𝐵 proportionality
outcome

North Ayrshire 2022 Ward 1 (8, 4, 5) 0.17 0.87 seats 0.24 1.19 seats 0 seats

Angus 2012 Ward 8 (4, 2, 4) 0.24 0.96 seats 0.26 1.02 seats 1 seat

Clackmannanshire 2012 Ward 2 (5, 3, 4) 0.32 1.27 seats 0.31 1.25 seats 1 seat

Aberdeen 2022 Ward 12 (7, 3, 4) 0.31 1.26 seats 0.36 1.42 seats 1 seat

Aberdeen 2017 Ward 12 (6, 4, 4) 0.33 1.33 seats 0.41 1.63 seats 1 seat

Falkirk 2017 Ward 6 (3, 3, 4) 0.34 1.35 seats 0.43 1.71 seats 2 seats

Renfrewshire 2017 Ward 1 (4, 4, 4) 0.37 1.49 seats 0.46 1.84 seats 1 seat

Fife 2022 Ward 21 (4, 4, 4) 0.46 1.86 seats 0.51 2.02 seats 2 seats

Glasgow 2012 Ward 16 (7, 5, 4) 0.60 2.40 seats 0.58 2.32 seats 3 seats

Table 1. Here, 𝑠 is the number of mainstream-left candidates (defined by membership in the Green, Liberal
Democrat, and Labour parties), 𝑟 is the number of candidates from all other parties, and 𝑘 is the number of
seats to be filled in the election. We treat the electorate as a single bloc (undivided) and measure 𝜋𝐵 as the
level of first-place support for the B slate, and the share of top-𝑘 Borda scores, respectively, for the B slate.

Example 2.3. We use a sample of nine real-world Scottish local government STV elections to

illustrate how to use the definition in practice. We will use the simplified slate structure where

three Scottish parties—Green, Liberal Democrat, and Labour—are defined as a "mainstream left"

slate B, and slate A combines all other parties.
8
In Table 1 we consider the level of proportionality

in two ways. We first use first-place preference to define 𝜋𝐵 , the propensity of voters to support

slate B. (Equivalently, we can think of this as defining blocs by first-place vote and adopting 100%

cohesion.) This means that the number of seats needed to achieve (first-place) proportionality is

𝜋𝐵 · 𝑘 , the proportional seat share times the number of seats. Applying an alternative choice of

propensity, we can use 𝜋𝐵 to measure the slate-B share of the top-𝑘 Borda scores to arrive at a

different proportionality target.

3 GENERATIVE MODELS
3.1 Constructing the models
In this section, we set up generative models of election, including several variants derived from

classical statistical ranking literature in the style of Plackett-Luce and Bradley-Terry models.
9

Though at first the by-name and by-slate versions may seem extremely similar, we find that Slate-

PL and Slate-BT have several desirable properties compared to Name-PL and Name-BT. These,

together with a model called the Cambridge sampler (Slate-CS), make up the generative models

explored in the empirical work in this paper.

8
The other parties include the centrist Scottish National Party, parties defined by their stance on independence from the UK,

right-wing parties like the National Front, and some farther-left socialist parties. STV can be tested with respect to any

slate, though securing proportionality by first-place preference will be most plausible when the slate has cohesive support

from a subset of voters.

9
Earlier versions of the Name-PL, Name-BT, and Slate-CSmodels have been discussed in unpublished work by an overlapping

collection of authors. References are suppressed here for anonymization purposes.
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Definition 3.1. For all of the models below, assume a fixed bloc structure (𝐴,A, 𝐵,B) with
A = (𝐴1, . . . , 𝐴𝑟 ) and B = (𝐵1, . . . , 𝐵𝑠 ), allowing the possibility that 𝐴 = ∅ as before.

A ballot is a partial or complete ranking of the 𝑟 + 𝑠 candidates and a ballot type is a partial or
complete permutation of the symbols𝐴𝑟𝐵𝑠 , i.e., a simplified ballot that treats the candidates of each

slate as indistinguishable from each other.

The models below will use the following parameters to generate a profile for bloc 𝐵:

Cohesion Tendency of the bloc to support slate B, given as a parameter 𝜋𝐵 ≤ 1 (typically required to

be at least 1/2 in the multi-bloc case).

Strength Tendency of bloc 𝐵 to agree on preferred candidates within each slate. This consists of

probability vectors 𝐼𝐵𝐴 = (𝑎1, . . . , 𝑎𝑟 ) and 𝐼𝐵𝐵 = (𝑏1, . . . , 𝑏𝑠 ).
We can combine the cohesion and strength data into a single probability vector

𝐼𝐵 =
(
(1 − 𝜋𝐵)𝑎1, . . . , (1 − 𝜋𝐵)𝑎𝑟 , (𝜋𝐵)𝑏1, . . . , (𝜋𝐵)𝑏𝑠

)
.

Using these components, we can define five generative models as follows. The first two work

directly with ballots, while the latter three first construct ballot types. These are analogous to the

profile by name and the profile by slate in Example 2.2.

Name-PL Plackett-Luce by name: Each 𝐵-bloc voter chooses candidate 𝑖 to be ranked first with

probability 𝐼𝐵 (𝑖). They continue to select candidates for lower-ranked positions in order,

at each stage selecting candidate 𝑗 with probability proportional to 𝐼𝐵 ( 𝑗). In other words,

each voter samples their ballot without replacement from all candidates proportional to

their weighting in 𝐼𝐵 .

Name-BT Bradley-Terry by name: The probability that a 𝐵 voter casts a ballot 𝜎 is proportional to∏
𝑖<𝜎 𝑗

𝐼𝐵 (𝑖)
𝐼𝐵 (𝑖) + 𝐼𝐵 ( 𝑗)

,

where 𝑖 <𝜎 𝑗 means that 𝑖 is ranked before (i.e., higher than) 𝑗 in 𝜎 . In other words, for each

pairwise comparison of candidates, we introduce a term for the likelihood of ranking one

before the other coming from the relative weights in 𝐼𝐵 .

Slate-PL Plackett-Luce by slate: Each 𝐵-bloc voter chooses between the symbol 𝐴 and 𝐵 in the 𝑖th

position with probability 𝜋𝐵 of choosing 𝐵, as long as both A candidates and B candidates

remain available. Once a slate is exhausted, the rest of the complete ranking is filled in with

the remaining symbol.

Slate-BT Bradley-Terry by slate: Suppose a ballot type 𝜎 is a permutation of 𝐴𝑟𝐵𝑠 , that is, an ordered

list containing 𝑟 𝐴 symbols and 𝑠 𝐵 symbols. Suppose that out of the 𝑟𝑠 comparisons of the

instances of 𝐴 with the instances of 𝐵, the 𝐴 occurs earlier than the 𝐵 a total of 0 ≤ 𝑖 ≤ 𝑟𝑠

times. The probability that a 𝐵 voter casts this ballot is proportional to (1 − 𝜋𝐵)𝑖 (𝜋𝐵)𝑟𝑠−𝑖 .
Slate-CS Cambridge sampler: We draw from a dataset consisting of ten years of ranked votes from city

council elections in Cambridge, MA. Historical candidates have been labeled as white (W) or

as people of color (C), with help from local organizers. To use this model, we make a choice

to designate bloc B as corresponding to voters who put a W candidate first (𝐵 =𝑊 ), or who

put a C candidate first (𝐵 = 𝐶). We use the cohesion parameter 𝜋𝐵 to decide probabilistically

whether the voter chooses their own slate or the other slate in the first position. Then we

complete the ballot type by drawing with weight proportional to frequency from the cast

ballots with that header.

In all three Slate models, we must then assign candidate names to the symbols 𝐴 and 𝐵. We do

so by drawing without replacement (Plackett-Luce style) from 𝐼𝐵𝐴 and 𝐼𝐵𝐵 separately to order A
and B, then fill in names accordingly.
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Remark 1 (Names versus slates). It turns out to be an important distinction to work directly
with the names or to create a type first, then add names. The reason for the divergence is that the Slate
models handle 𝐼𝐵𝐴 and 𝐼𝐵𝐵 separately; concatenating them into 𝐼𝐵 before making length comparisons
yields unintended results, such as a highly cohesive bloc whose voters tend to put their strong candidate
first and then immediately cross over to supporting the opposite slate. These effects can be explored in
the supplementary plots (§B) which compare all five models.

Remark 2 (About the Cambridge data). Cambridge, Massachusetts uses STV for its city council
and school board elections and has done so since 1941. Our source of Cambridge historical data is city
council elections to fill 𝑘 = 9 seats by STV from 2009 to 2017, coded by candidate race as described
above; there are frequently 20 or more candidates who run in each contest. If a ballot type is selected
from the historical frequency histogram that has more candidates from a given slate than the (𝑟, 𝑠)
chosen for a given simulation run allows, then we ignore further instances. For instance, a ballot type
of 𝐴𝐴𝐴𝐵𝐵 in an election where 𝑟 = 𝑠 = 2 will be read as 𝐴𝐴𝐵𝐵.
One valuable aspect of our use of Cambridge historical data in the present study is that it lets

us incorporate realistic short-ballot voting behavior without a proliferation of extra parameters. For
instance, Cambridge voters cast "bullet votes" (listing only one candidate and leaving other positions
blank) 7501 times out of 87,914 ballots cast in our data set, and this will be reflected in the ballots
generated by the CS model. However, a serious limitation is that we have coded the candidates by
race, while Cambridge city council politics are likely more polarized by other candidate features—for
instance, an explicit slate of affordable housing candidates is routinely advertised before election day
and is highly salient to voter behavior. Nevertheless, race is a candidate feature often apparent to voters
which allows us to observe naturalistic patterns of alternation in voting.

These give new generative models to study. As noted in the literature review (§1.2), many

authors have considered only solid bloc voting (the "solid coalitions" assumption), in which every

𝐴 voter casts a ballot of type 𝐴𝐴 . . . 𝐴𝐵𝐵 . . . 𝐵. Others have used extremely stylized assumptions

like Impartial Culture, Impartial Anonymous Culture, and spatial voting. These new models greatly

expand on the generative models in the literature, and they do so in a manner that allows voting

rights experts in the United States to plug in standard cohesion parameters for majority andminority

groups as the 𝜋𝐴, 𝜋𝐵 . We will give a brief demonstration of their flexibility below in §3.2.2.

Remark 3 (PL preferences). Slate-PL with (𝐴,A, 𝐵,B) and any cohesion and candidate strength
parameters produces blocs with consistent positional preference 𝜋𝐵 (respectively 𝜋𝐴) for their own
slates, and therefore with first-place preference 𝜋𝐵 (or 𝜋𝐴) as well.

Remark 4 (Mixture models). The definitions above are in terms of specified blocs of voters with
different voting preferences. However, there is a strong connection to mixture models suggested by the
structure here. In a mixture model, each voter is assigned independently to a class, and then randomly
submits a ballot based on the parameters for that class. More precisely, if 𝑁1 and 𝑁2 are the weights
for two different classes of voter with 𝑁1 + 𝑁2 = 1, and 𝜇1 and 𝜇2 are two distributions on ballots
corresponding to the two classes, the probability of a ballot 𝜎 is

𝜇 (𝜎) = 𝑁1𝜇1 (𝜎) + 𝑁2𝜇2 (𝜎).
As the number of voters increases, the fraction of voters assigned to each class converges to 𝑁1 and
𝑁2 respectively; for large numbers of voters we can therefore consider the size of each class to be
predetermined and treat voters as if they belong to two blocs of fixed size.
In particular, since it considers pairwise probabilities, the BT model with two blocs resembles a

mixture of Mallows models. It differs in allowing swaps to be weighted by preference between slates
rather than by their position in the ranking.
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3.2 Visualization
3.2.1 MDS plot of vote profiles. One difficulty in studying ranked choice elections is that, unlike

oversimplified Example 2.2, real-world elections frequently have too many valid ballots possible

to effectively see the full preference profile. For instance, an election with six candidates can be

thought of as having 1236 possible ballots to cast—there are 6! complete rankings and a roughly

equal number of partial rankings.
10
Thinking of profiles as distributions over valid ballots allows

us to define natural notions of distance between profiles, such as the 𝐿1 distance between profiles

given by the sum over possible ballots of the absolute value of the difference of shares for that

ballot. (Up to a constant factor, this is the same as the total variation distance of distributions.) With

this notion we can visualize differences between the generative models as we vary parameters.
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MDS plot for L_1 distance, p = 0.7
Slate-CS (W)
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Fig. 1. Multi-dimensional scaling (MDS) plot for one-bloc profiles with 𝑟 = 𝑠 = 3 (3 candidates per slate), under
a variety of generative models and candidate strength scenarios. Each model is designated by a different color,
and the candidate strength scenarios are denoted U, S, X, Y, as described in the text. The pairwise distances
between profiles are computed with 𝐿1 distance on the distributions. Each preference profile has 1000 ballots,
and we have generated 10 profiles by each of the 16 model/strength pairs. Note: it is not surprising that CS
profiles, both when 𝐵 =𝑊 and 𝐵 = 𝐶 , fall far from PL and BT profiles, because PL and BT always generate
complete rankings, while CS uses real historical data that includes many partial rankings. This observation
can be used to give a sense of scale for the distances in the plot.

To illustrate the importance of candidate strength, we introduce four out of the infinitely many

variations on 𝐼𝐵 concerning the preferences of 𝐵-bloc voters.

• U (uniform-uniform): preferences are uniform over A candidates and uniform over B
candidates, so within each slate any two candidates have a 1 : 1 ratio of support.

• S (strong-strong): preferences are strong over both slates, namely with one candidate

receiving 10 times the support of all the others, who are equal.

• X (uniform-strong): uniform support for A candidates and 10:1:1 support for B candidates;

• Y (strong-uniform): the reverse.

10
Here, we identify a ballot of length 5 with a complete ranking of length 6, since the last-place candidate is implicit.
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In themulti-dimensional scaling (MDS) plot in Figure 1, the first-place preference forB candidates

is 𝑝𝐵 = .7; Supplemental Figure 38 shows how the outputs vary in 𝑝 . In this plot, we can see some

systematic differences and similarities.
11

For instance, strength scenarios Y and X interpolate

between U and S, as we might have expected. Also, BT profiles resemble both kinds of Cambridge

outputs more than PL profiles do, though the reason for this is far less clear.

3.2.2 Validation on Scottish elections. A benefit of using parameterized generative models is the

possibility of fitting to real-world elections. Though we leave a full-bore fitting effort to future work,

this section shows the potential of this approach to match the observed non-solidity of coalitions.

To this end, we define a swap distance between two ballot types, partial or complete. For complete

ballots, this counts the smallest number of swaps of neighboring symbols necessary to transform

one ballot type into the other; for instance, dist(𝐴𝐴𝐵𝐵𝐵,𝐴𝐵𝐵𝐴𝐵) = 2. See §A for a discussion of

efficiently measuring this distance, including an extension to partial or weakly ranked ballots.

Using swap distance, we can investigate the extent to which vote profiles deviate from the solid

coalition assumption. Let us return to the nine Scottish elections and the mainstream-left slate B
discussed above. For every ballot cast in the election we can compute its distance from the solid

A-over-B ballot type 𝐴𝑠𝐵𝑟 . (Note that a solid vote of the opposite kind looks like 𝐵𝑟𝐴𝑠
, lying at

distance 𝑟𝑠 from its reverse.) For the Aberdeen Ward 12 and Falkirk Ward 6 elections from 2017,

these distances are summarized in Figure 2.

Next, we can attempt to match these histograms using the generative models in §3.1. We can

accomplish interesting results even with an undivided electorate (one bloc). We choose our cohesion

parameter by optimizing 𝜋𝐵 to minimize 𝑑Wass to the observed election.

The resulting distance distributions are visualized in Figure 2 (and see Supplement D for a full

range of outputs). Note that the traditional assumption of solid coalitions produces distributions

that are point masses at distances 0 and 𝑟𝑠 , which clearly have little in common with the real-world

ballot distributions. Both visually and in terms of measured Wasserstein distance, the models do

well at matching observed patterns of non-solidity of coalitions.
12

11
The reader should recall that MDS plots are simply low-distortion planar embeddings, which depend on a choice of

random seed. The 𝑥 and 𝑦 axes have no meaning; only the relative pairwise distances are meaningful with respect to the

data. We have verified that the structure of the plots stays the same for a few choices of random seed.

12
To get a sense of scale, note that shifting the entire distribution by one bin would give 𝑑

Wass
= 1.
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Fig. 2. Top: Histograms showing the distribution of swap distances to solid A-over-B type in Aberdeen Ward
12 and Falkirk Ward 6, 2017. Bottom: Bubble plots showing the distribution of swap distances for model
outputs compared to the same two elections. (The dark blue row is the observed election, for which the data
exactly repeats the conventional histograms.) The area of each circle is proportional to frequency.

3.2.3 Parameter interactions. Next, we leverage the generative models in combination with a voting

rule to produce simulations that highlight complex interactive effects between model parameters.

We vary 𝑁𝐵 over {.1, .2, .3, .4} and we vary both 𝜋𝐴 and 𝜋𝐵 . We have selected four candidate

strength scenarios for two blocs (compare the one-bloc scenarios in §3.2.1); these are chosen to

give a small window on how powerfully candidate strength can interact with other factors.

• UU both blocs have uniformly random preference order over each slate;

• UX: 𝐼𝐵𝐵 has a strong (10:1:1) candidate while others are uniform;

• XX-same: 𝐴 and 𝐵 blocs strongly prefer the same B candidate;

• XX-diff: 𝐴 and 𝐵 blocs strongly prefer different B candidates.

In effect, this makes a 5-tuple of choices for each batch of runs: model, strength scenario, population

share, cohesion for A voters, and cohesion for B voters. We then generate a batch of profiles from

each tuple (100 for the 3-seat case and 25 for the 6-seat case) to place each symbol on the plot. The

𝑥-axis position is the combined support level for B candidates, given by 𝑁𝐵 · 𝜋𝐵 + (1−𝑁𝐵) (1− 𝜋𝐴)
as above—so a given support level can be achieved in many different ways. The 𝑦-axis position is

the average number of seats won by B candidates when the batch of profiles is run through the

STV voting rule.

If the proportionality ideal were hit exactly, the symbols would all fall on the main diagonal. The

proportionality target rounded up and down to whole numbers of seats is shown with dotted lines
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Combined support vs. STV results
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100 trials, 1000 ballots, 3 seats, 3 candidates per bloc

Fig. 3. Setting (𝑟, 𝑠, 𝑘) = (3, 3, 3), we independently vary the 𝐵 proportion of the electorate, the generative
model, the 𝐴 and 𝐵 cohesion, and the candidate strength settings. In this visualization, we have run 100
trials for each parameter tuple, recording the number of B candidates elected for each simulated profile.
The 𝑥 axis position is the combined support for B (with respect to first-place votes) and the 𝑦-axis position
records the average number of seats over the trials with each tuple of parameters. The dashed lines show the
proportionality target rounded up and down to the nearest whole number of seats.

in the plots. Instead of symbols falling squarely in these targets, Figures 3 and 4 show an intriguing

"winner’s bonus"—support shares away from 50% can get amplified seat shares through STV. And

the effects are starkly different depending on candidate strength, with a very high slope observed

when Bradley-Terry ("deliberative") voting combines with a lack of strong candidates within slates

(scenario UU). In the presence of short ballots (CS model), having consensus strong candidates

(XX-same / XX-diff) can create major representational shortfalls for the B slate, with one- and

two-seat outcomes out of six persisting as support pushes past 50 and even 60%.
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Combined support vs. STV results
2 bloc profile

25 trials, 1000 ballots, 6 seats, 6 candidates per bloc

Fig. 4. This time (𝑟, 𝑠, 𝑘) = (6, 6, 6). We again independently vary the 𝐵 proportion of the electorate, the
generative model, the𝐴 and 𝐵 cohesion, and the candidate strength settings. In this visualization, we have run
25 trials for each parameter tuple, recording the number of B candidates elected for each simulated profile.
The 𝑥 axis position is the combined support for B and the 𝑦-axis position records the average number of seats
over the trials with each tuple of parameters. The dashed lines show the proportionality target rounded up
and down to the nearest whole number of seats.

All of these observations invite further thought and investigation, starting with unpacking these

omnibus diagrams. In the present paper they serve to illustrate the richness of this approach for

understanding interactive effects for STV under realistically complex conditions.
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4 ASYMPTOTIC PROPERTIES
In this section, we give proof of concept that the framework presented here is robust enough to

admit provable statements about STV, a system of election for which theorems have so far been

elusive.
13

4.1 Single bloc asymptotics
In this section, we focus on the case of one bloc of voters and two slates of candidates. Note that

even with a single bloc the fact that we have two slates means any lack of cohesion immediately

leads to the richer types of crossover ballots that motivated our generative models.

For the Slate-PL and Name-PL models, we can prove theoretical results that offer a kind of

asymptotic generalization of the well-known Proportionality for Solid Coalitions (PSC). We give

asymptotics as the number of voters goes to infinity, since our models are probabilistic.

We start by giving bounds on the outcomes for a bloc voting under Slate-PL model. The results

reveal that the choice of precise method for tallying votes has a profound impact on the expected

outcomes. With that in mind, we define two different methods for deciding which candidates are

elected in each round of an STV vote tallying process.

• Simultaneous election: if multiple candidates exceed the threshold for election in a certain

round, they are all elected and their excess votes transfer down to the remaining candidates

before the next round.

• One-by-one election: if multiple candidates exceed the threshold for election in a certain

round, the one with the most votes is elected and their excess votes are transferred. The

tallying process then proceeds to the next round.

Based on the way that election results are reported by the city of Cambridge, is appears that

Cambridge follows the simultaneous election method.
14

Proposition 4.1 (Slate-PL with simultaneous election). Consider an election for 𝑘 open seats,
a single bloc of 𝑁 voters, and two slates of candidates A and B. Suppose that the voters vote according
to a Slate-PL model with cohesion parameter 0.5 < 𝜋𝐴 ≤ 1, and all voters rank the candidates within
each slate in the same order. Suppose also that the number of candidates in each slate is more than 𝑘 ,
and the votes are tallied using simultaneous election.

(a) For all 𝜀 > 0, the number of candidates elected from slate B is bounded below by ⌊(1−𝜋𝐴) (𝑘 +
1) − 𝜀⌋ and above by ⌊𝑘/2⌋ asymptotically almost surely as 𝑁 → ∞.

(b) Suppose 𝜋𝐴 < 1. As 𝑘 → ∞, the fraction of elected candidates which are from slate B
(asymptotically almost surely as 𝑁 → ∞) tends to 1/2.

Note that the lower bound in (a) is precisely the number of thresholds exceeded by the first-place
votes for slate B.

Proof. We first derive the lower bound in (a). At any stage during the vote tallying process, let

𝜔𝐴 (resp. 𝜔𝐵) denote the fraction of the original 𝑁 ballots which have both not been discarded yet,

and whose top vote is from A (resp. B). Since we are concerned with results as 𝑁 → ∞, we may

assume that these fractions are, up to an arbitrarily small error, deterministic quantities at each

stage of the vote tallying process.

Note that the top candidate of any ballot is determined by its slate, since the ranking of all

candidates within a slate is the same across ballots. This means that only one candidate fromA and

one candidate from B receive first-place votes at a time. Let 𝑡 = 1/(𝑘 + 1) denote the Droop quota

13
The assumption of solid coalitions, in particular, assumes away any role for transfer between blocs.

14
See for instance https://www.cambridgema.gov/Election2023/Official/Council%20Round.htm
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as a fraction of total votes. If 𝜔𝐴 > 𝑡 and 𝜔𝐵 > 𝑡 , then one candidate is elected from each slate.

After discarding votes and fractional transfers, the fractions 𝜔𝐴 and 𝜔𝐵 are updated as follows

𝜔 ′
𝐴 = (𝜔𝐴 + 𝜔𝐵 − 2𝑡)𝜋𝐴

𝜔 ′
𝐵 = (𝜔𝐴 + 𝜔𝐵 − 2𝑡) (1 − 𝜋𝐴)

Thus, the ratio 𝜔𝐴/𝜔𝐵 returns to 𝜋𝐴/(1 − 𝜋𝐴) immediately after two candidates (one from each

slate) are elected in a singe round. If (1 − 𝜋𝐴) ≤ 𝑡 = 1/(𝑘 + 1), then the bound holds trivially, so

suppose (1 − 𝜋𝐴) > 𝑡 . Two candidates are elected in round 𝑖 if (1 − 𝜋𝐴) (1 − 2𝑡 (𝑖 − 1)) > 𝑡 . Setting

𝑖 = (1 − 𝜋𝐴) (𝑘 + 1) + 𝜀, we obtain

(1 − 𝜋𝐴) (1 − 2𝑡 (𝑖 − 1)) = (1 − 𝜋𝐴) − 2𝑡 (𝑖 − 1) (1 − 𝜋𝐴)
≥ (1 − 𝜋𝐴) − 𝑡 (𝑖 − 1) (since 𝜋𝐴 ≥ 0.5)

> 𝑡

so at least ⌊(1 − 𝜋𝐴) (𝑘 + 1)⌋ candidates from slate B are elected. This proves the lower bound.

For the upper bound, note that if we start with 𝜔𝐴 > 𝜔𝐵 , then this inequality is maintained

except for after a round where only an A candidate is elected. Following such a round, a single B
candidate can be elected, after which the inequality 𝜔𝐴 > 𝜔𝐵 is restored. Thus the only rounds in

which a single B candidate can be elected are directly after rounds where a single A candidate is

elected. It follows that at least as many A candidates as B candidates are elected.

To prove (b), note that the first election of single A candidate (rather than the simultaneous

election of and A and B candidate) takes place when (1 − 𝜋𝐴) (𝜔𝐴 + 𝜔𝐵) < 𝑡 . Thus the number of

candidates which can still be elected is at most

(𝜔𝐴 + 𝜔𝐵)/𝑡 = (1 − 𝜋𝐴)
(
1 + 𝜋𝐴

1 − 𝜋𝐴

)
(𝜔𝐴 + 𝜔𝐵)/𝑡

< 1 + 𝜋𝐴

1 − 𝜋𝐴
.

As 𝑘 → ∞, the ratio of this quantity to 𝑘 goes to zero, which gives the required result. □

See Figure 5 for an empirical demonstration of Proposition 4.1. To obtain the exact asymptotics

(as 𝑁 → ∞) plotted in the figure, we allow a fractional number of ballots of each kind, and assume

that the number of ballots of each kind is exactly equal to the expectation under the model. We

also assume that vote transfers are fractional and deterministic.
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Fig. 5. A visualization of the lower bound and limiting behavior for a single bloc of voters described in
Proposition 4.1. The dotted line indicates the lower bound in part (a) of the proposition, and the blue points
are exact asymptotics as 𝑁 → ∞ for various values of 𝜋𝐴 .
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It is somewhat surprising that, as 𝑘 → ∞, A and B are equally represented even though all

voters are in bloc 𝐴. Proposition 4.1 assumes simultaneous election transfers—this, together with

the fact that there are fixed rankings over A,B, creates a situation where in nearly every round all

first-place votes land on the top remaining A and B candidates, and both are elected.

We now consider the one-by-one vote tallying method. A practical difference between the

simultaneous and one-by-one elections is that one-by-one election may exhibit a kind of leap-

frogging, where a candidate who is over the threshold in round 1 may nonetheless be elected after a

candidate who was below the threshold in round 1. This does not happen in simultaneous elections.

Proposition 4.2 (Slate-PL with one-by-one election). Consider an election for 𝑘 open seats, a
single bloc of 𝑁 voters, and two slates of candidates A and B. Suppose that the voters vote according
to a Slate-PL model with cohesion parameter 0.5 < 𝜋𝐴 ≤ 1, and all voters rank the candidates within
each slate in the same order. Suppose also that the number of candidates in each slate is more than 𝑘 ,
and the votes are tallied using one-by-one election.

Then, as 𝑘 → ∞, the fraction of candidates elected from A is lower bounded by

1 − 1/⌈log𝜋𝐴 (1/2))⌉

and upper bounded by
1 − 1/(1 + ⌈log𝜋𝐴 (1/2))⌉)

asymptotically almost surely as 𝑁 → ∞.

Proof. Let 𝜔𝑧
𝐴
(𝜔𝑧

𝐵
) denote the fraction of ballots which have not been discarded, whose top

vote is from A (B, respectively) at the start of round 𝑧.

Since 𝜋𝐴 > 0.5, 𝜔1

𝐴
= 𝜋𝐴 > 𝜔1

𝐵
= 1 − 𝜋𝐴 and an A candidate is elected in the first round. We

have the following update:

𝜔2

𝐴 = (𝜔1

𝐴 − 𝑡)𝜋𝐴 = 𝜋2

𝐴 − 𝜋𝐴𝑡

𝜔2

𝐵 = 𝜔1

𝐵 + (𝜔1

𝐴 − 𝑡) (1 − 𝜋𝐴)

If an A candidate is elected again in the second round, then

𝜔3

𝐴 = (𝜔2

𝐴 − 𝑡)𝜋𝐴 = ((𝜋2

𝐴 − 𝜋𝐴𝑡) − 𝑡)𝜋𝐴 = 𝜋3

𝐴 − 𝜋2

𝐴𝑡 − 𝜋𝐴𝑡

𝜔3

𝐵 = 𝜔2

𝐵 + (𝜔2

𝐴 − 𝑡) (1 − 𝜋𝐴)

Starting from the first round of the election, suppose 𝑠 − 1 A candidates were elected thusfar.

Now an A candidate is elected in seat 𝑠 if 𝜋𝑠
𝐴
≥ 1 − 𝜋𝑠

𝐴
− (𝑠 − 1)𝑡 . Letting 𝑘 → ∞ (so 𝑡 → 0), an A

candidate is elected for the 𝑠-th seat if 𝜋𝑠
𝐴
≥ 1− 𝜋𝑠

𝐴
, or 𝜋𝑠

𝐴
≥ 1/2, otherwise a B candidate is elected.

It follows that ⌊𝑠∗⌋ candidates from A are elected consecutively at the start of the election, with

𝑠∗ = log(1/2)/log(𝜋𝐴) satisfying 𝜋𝑠∗

𝐴
= 1 − 𝜋𝑠∗

𝐴
, followed by the election of the first B candidate. At

this stage the fraction of A candidates elected is 1 − 1/(⌊𝑠∗⌋ + 1).
Let a sequence of rounds consist of the time between the elections of B candidates. The first

sequence starts at the beginning of the election process and ends with the election of the first

B candidate in seat ⌊𝑠∗⌋ + 1. The second sequence starts from seat ⌊𝑠∗⌋ + 2 and ends when a B
candidate is next elected, etc.

Notice that at the start of the first sequence A’s fraction of the overall first-place votes were 𝜋𝐴.

At the start of any subsequent sequence the most recent update from electing a B candidate is

𝜔 ′
𝐴 = 𝜔𝐴 + (𝜔𝐵 − 𝑡)𝜋𝐴

𝜔 ′
𝐵 = (𝜔𝐵 − 𝑡) (1 − 𝜋𝐴)
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from which it follows thatA’s share of the first-place votes is at least 𝜋𝐴. As a result, each sequence

will elect at least as many A candidates as the first, from which we conclude that A’s fraction of

seats is at least 1 − 1/(⌊𝑠∗⌋ + 1).
For the upper bound, observe that if initially 𝜔0

𝐴
= 1, then after electing the firstA candidate and

updating, 𝜔1

𝐴
= 𝜋𝐴 as in our starting condition. Other words, when a sequence starts with 𝜔𝐴 = 𝜋𝐴

it elects ⌊𝑠∗⌋ A candidates before the first B candidate, and if it starts with 𝜔𝐴 = 1 it elects ⌊𝑠∗⌋ + 1.
At the start of every sequence, after electing a B candidate, 𝜋𝐴 ≤ 𝜔𝐴 ≤ 1, from which we conclude

that at most ⌊𝑠∗⌋ + 1 A candidates are elected for every B candidate. The bound follows. □

Figure 6 contains a visualization of Proposition 4.2 using the same method to compute exact

asymptotics as in Figure 5.
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Fig. 6. Visualizations demonstrating the limit behavior described in Proposition 4.2 for 𝑘 = 10, 1000, 100000.
The blue points are exact asymptotics as 𝑁 → ∞ for various values of 𝜋𝐴 . The theoretical bounds shown by
dashed lines hold in the limit as 𝑘 → ∞ for 𝜋𝐴 > 0.5. The dotted line is 𝑦 = 𝜋𝐴 , which is also A’s combined
share since there is no bloc B.

Finally, when one bloc votes by Name-PL, asymptotic results are easy to describe for extreme

candidate strength scenarios, assuming there are more candidates in each slate than seats open,

and equal numbers of candidates in each slate.

Proposition 4.3 (Name-PL with one-by-one election). For ballots generated by a Plackett-Luce
model, the STV winners are (a.a.s.) the top candidates by support value (up to a choice about how
to break ties between equally supported candidates). Thus we obtain the following results a.a.s. as
𝑁 → ∞.

(a) If 𝑎1 ≫ 𝑎2 ≫ . . . and 𝑏1 ≫ 𝑏2 ≫ . . ., then equal numbers of candidates are elected from both
slates if there are an even number of seats open. If there are an odd number of seats open and
𝜋𝐴 > 0.5, then one more A candidate is elected than B candidates.

(b) If the support is uniform and 𝜋𝐴 > 0.5, then only A candidates are elected.

Proof. To prove the first statement, consider a Plackett-Luce model with probability vector

(𝑐1, . . . , 𝑐𝑘 ). For any partial ranking of candidates 𝜎 ′ = 𝐶1 < 𝐶2 < . . . < 𝐶ℓ , let 𝐹 (𝜎 ′, 𝑖) be the

proportion of ballots which begin with 𝐶1 < 𝐶2 < . . . < 𝐶ℓ < 𝐶𝑖 . Asymptotically almost surely,

if 𝑖, 𝑗 ∉ 𝜎 ′
, we have 𝑐𝑖 < 𝑐 𝑗 =⇒ 𝐹 (𝜎 ′, 𝑖) < 𝐹 (𝜎 ′, 𝑗). It follows that, initially, the candidates with

the most first place votes are (a.a.s.) those with the highest support values. Moreover, after vote

transfers, the candidates with the most first places will be (a.a.s.) those unelected and un-eliminated

candidates with the highest support values. This proves the statement, and (a) and (b) follow as

straightforward observations. □
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4.2 Two-bloc asymptotics with fixed candidate order
We conclude our consideration of electoral outcomes with an observation that the asymptotics

of two-bloc elections for the one-by-one variant of STV interpolate between solid coalitions and

unpolarized voting in an intuitive way. (See Figure 7.)
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Fig. 7. Exact asymptotics (as the number of voters gets large) showing the share of seats won by the 𝐴 bloc
as their vote share and cohesion varies. The elections have𝑚 = 10, 20, 100 seats, with an inexhaustible supply
of candidates. We use the Slate-PL model, suppose both blocs use the same fixed ordering over A and B and
apply the one-by-one election variant of STV defined in §4.

One interesting (and real) artifact visible in these plots is that the outcome with seat share of 50%

is a plateau that occurs for a range of cohesion values. To get an idea of the reason for this, note that

since this plot assumes both blocs use a fixed candidate order 𝐴1, 𝐴2, . . . and 𝐵1, 𝐵2, . . . , the first

candidate elected with 𝜋𝐴, 𝑁𝐴 > .5will always be𝐴1. For large numbers of seats, where the election

threshold is close to zero, there is a phase transition when 𝜋2 = (1 − 𝜋) + 𝜋 (1 − 𝜋), occurring at
𝜋 = 1/

√
2 ≈ .707, that determines whether the first transfer result in the election of 𝐴2. For smaller

𝜋 , enough support will transfer to 𝐵1 that they are next to be elected. Similar polynomial thresholds

determine how many 𝐴 candidates are elected between successive 𝐵 candidates. For 𝜋 approaching

1/2, the order of election will alternate 𝐴𝐵𝐴𝐵𝐴𝐵 . . . , giving 1/2 seat share to each side.

5 CONCLUSION AND FUTUREWORK
In §3.2.2 we make first steps toward fitting models and parameters to realistic elections, with

immediate payoff in a starkly improved correspondence to Scottish ranked elections than solid

coalitions could offer. A more comprehensive fitting effort along these lines—simultaneously

learning optimal blocs and slates from observed elections—is a natural future project. This would

also point the way to new methods of measuring the degree of polarization, which can feed back

usefully into voting rights law.

Our goal in this paper is to lay the groundwork to systematically study the tendency of systems

to deliver more or less proportional outcomes for voters. Crucially, the framework we propose

allows but does not require party labels, so that we can also consider emergent blocs with similar

voting behavior. Finally, the new generative models outlined here can be theoretically explored,

opening up rich directions for mathematical study, but can also give decision-makers a powerful

toolkit for practical electoral reform.
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A BALLOT COMPLETION
The distance between two (complete) ballot types is meant to measure the smallest number of swaps

between adjacent symbols to turn one ballot into the other. Recall that in a ballot type, candidates

of each slate are indistinguishable from one another. For example, for an election with (𝑟, 𝑠) = (2, 3)
(i.e., A = {𝐴1, 𝐴2} and B = {𝐵1, 𝐵2, 𝐵3}), dist(𝐴𝐴𝐵𝐵𝐵,𝐴𝐵𝐵𝐴𝐵) = 2 and dist(𝐴𝐴𝐵𝐵𝐵, 𝐵𝐵𝐵𝐴𝐴) = 6.

For incomplete ballots and weak orders over candidates, we define this pairwise distance to be the

expected smallest number of swaps between adjacent symbols required to turn one ballot into the

other assuming that each way of breaking ties is equally likely. For example, in the above election

with 𝑟 = 2 and 𝑠 = 3, the partial ballot AB has three completions: ABABB, ABBAB and ABBBA. As

a result,

dist

(
𝐴
𝐴
𝐵
𝐵
𝐵

,

𝐴
𝐵
−
−
−

)
=
1

3

[
dist

(
𝐴
𝐴
𝐵
𝐵
𝐵

,

𝐴
𝐵
𝐴
𝐵
𝐵

)
+ dist

(
𝐴
𝐴
𝐵
𝐵
𝐵

,

𝐴
𝐵
𝐵
𝐴
𝐵

)
+ dist

(
𝐴
𝐴
𝐵
𝐵
𝐵

,

𝐴
𝐵
𝐵
𝐵
𝐴

)]
=
1 + 2 + 3

3

= 2.

Let sc
𝐴 |𝐵 (𝜎) be the slate-ordered vector of Borda scores that result from ballot 𝜎 , where the

first 𝑟 entries sc𝐴 |𝐵 (𝜎)1 ≥ sc
𝐴 |𝐵 (𝜎)2 ≥ · · · ≥ sc

𝐴 |𝐵 (𝜎)𝑟 are the scores of 𝐴 symbols in decreasing

order, followed by the scores of B symbols sorted similarly in positions 𝑟 + 1 to 𝑟 + 𝑠 . In the case of

partial or weak orders, we take the average of the sorted score vectors over all ways of breaking

ties. For example, ballot 𝐴𝐴𝐵𝐵𝐵 has score vector (5, 4 | 3, 2, 1) and ballot 𝐴𝐵𝐴𝐵𝐵 has score vector

(5, 3 | 4, 2, 1). (The bar is just a decoration to remind us of the break between the slates.) Partial

ballot 𝐴𝐵 has an A symbol and two B symbols tied in positions 3, 4 and 5, resulting in score vector

(5, 2 | 4, 2, 2), while the weak preference order that rank the candidates {𝐴2, 𝐵1} above {𝐴1, 𝐵2, 𝐵3}
results in the slate-ordered score vector (4.5, 2 | 4.5, 2, 2). The number of pairwise swaps between

adjacent symbols that is required to turn ballot 𝜎1 into ballot 𝜎2 is related in a simple way to the 𝐿1

distance between their score vectors.

Lemma A.1. For ballot types 𝜎1, 𝜎2,

dist(𝜎1, 𝜎2) =
1

2

sc𝐴 |𝐵 (𝜎1) − sc𝐴 |𝐵 (𝜎2)

1

.
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B ONE-BLOC PROFILES
B.1 Attributes of profile, split by candidate pool and strength scenario

Fig. 8. The proportion of first-place votes forB candidates. Shown across different generative models, numbers
of candidates, and strength scenarios. Notice that Slate-BT and Name-BT are the only two models for which
first-place support may differ in expectation from the model parameter 𝜋 .
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Fig. 9. The proportion of Borda points for B candidates. Shown across different generative models, numbers
of candidates, and strength scenarios.
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Fig. 10. The proportion of second-place votes for B candidates. Shown across different generative models,
numbers of candidates, and strength scenarios. Notice that in the by-name models, the probability of ranking
your own bloc’s candidate second can actually be less than 50%, even in cases of high cohesion, if your slate
has a strong candidate. (We regard this as evidence that the Slate models are more realistic, but others may
hold different views.)
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Fig. 11. The proportion of third-place votes for B candidates. Shown across different generative models,
numbers of candidates, and strength scenarios.
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Fig. 12. The proportion of Borda points for B candidates given that a ballot started with an A candidate.
Shown across different generative models, numbers of candidates, and strength scenarios.
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Fig. 13. The proportion of Borda points for B candidates given that a ballot started with a B candidate.
Shown across different generative models, numbers of candidates, and strength scenarios.
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Fig. 14. The proportion of second-place votes for B candidates given that a ballot started with anA candidate.
Shown across different generative models, numbers of candidates, and strength scenarios.
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Fig. 15. The proportion of second-place votes for B candidates given that a ballot started with a B candidate.
Shown across different generative models, numbers of candidates, and strength scenarios.
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Fig. 16. The proportion of third-place votes for B candidates given that a ballot started with an A candidate.
Shown across different generative models, numbers of candidates, and strength scenarios.
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Fig. 17. The proportion of third-place votes for B candidates given that a ballot started with a B candidate.
Shown across different generative models, numbers of candidates, and strength scenarios.
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B.2 Attributes of profile, split by candidate pool and generative model

Fig. 18. The proportion of first-place votes for B candidates. Shown across different generative models,
numbers of candidates, and strength scenarios.
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Fig. 19. The proportion of Borda points for B candidates. Shown across different generative models, numbers
of candidates, and strength scenarios.
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Fig. 20. The proportion of second-place votes for B candidates. Shown across different generative models,
numbers of candidates, and strength scenarios. Notice that in the by-name models, the probability of ranking
your own bloc’s candidate second can actually be less than 50%, even in cases of high cohesion, if your slate
has a strong candidate. (We regard this as evidence that the Slate models are more realistic, but others may
hold different views.)
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Fig. 21. The proportion of third-place votes for B candidates. Shown across different generative models,
numbers of candidates, and strength scenarios.
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Fig. 22. The proportion of Borda points for B candidates. given that a ballot started with an A candidate.
Shown across different generative models, numbers of candidates, and strength scenarios.
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Fig. 23. The proportion of Borda points for B candidates. given that a ballot started with a B candidate.
Shown across different generative models, numbers of candidates, and strength scenarios.
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Fig. 24. The proportion of second-place votes for B candidates. given that a ballot started with aA candidate.
Shown across different generative models, numbers of candidates, and strength scenarios.
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Fig. 25. The proportion of second-place votes for B candidates given that a ballot started with a B candidate.
Shown across different generative models, numbers of candidates, and strength scenarios.
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Fig. 26. The proportion of third-place votes for B candidates given that a ballot started with an A candidate.
Shown across different generative models, numbers of candidates, and strength scenarios.
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Fig. 27. The proportion of third-place votes for B candidates given that a ballot started with a B candidate.
Shown across different generative models, numbers of candidates, and strength scenarios.
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B.3 Attributes of profile, split by strength scenario and generative model

Fig. 28. The proportion of first-place votes for B candidates across different generative models, numbers of
candidates, and strength scenarios.

Fig. 29. The proportion of Borda points for B candidates across different generative models, numbers of
candidates, and strength scenarios.
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Fig. 30. The proportion of second-place votes for B candidates across different generative models, numbers
of candidates, and strength scenarios. Notice that in the name models, the probability of ranking your own
bloc second can actually be less than 50%, even in cases of high cohesion, given particular strength scenarios.

Fig. 31. The proportion of third-place votes for B candidates across different generative models, numbers of
candidates, and strength scenarios.
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Fig. 32. The proportion of Borda points for B candidates given that a ballot started with an A candidate.
Shown across different generative models, numbers of candidates, and strength scenarios.

Fig. 33. The proportion of Borda points for B candidates given that a ballot started with a B candidate.
Shown across different generative models, numbers of candidates, and strength scenarios.
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Fig. 34. The proportion of second-place votes for B candidates given that a ballot started with a A candidate.
Shown across different generative models, numbers of candidates, and strength scenarios.

Fig. 35. The proportion of second-place votes for B candidates given that a ballot started with a B candidate.
Shown across different generative models, numbers of candidates, and strength scenarios.
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Fig. 36. The proportion of third-place votes for B candidates given that a ballot started with an A candidate.
Shown across different generative models, numbers of candidates, and strength scenarios.

Fig. 37. The proportion of third-place votes for B candidates given that a ballot started with a B candidate.
Shown across different generative models, numbers of candidates, and strength scenarios.
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C MORE MDS PLOTS
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Fig. 38. Multi-dimensional scaling (MDS) plots for profiles with 𝑟 = 𝑠 = 3 (3 candidates per bloc), under a
variety of generative models and candidate strength scenarios. The preference parameters 𝜋 in each model
are chosen to produce an expectation of 𝑝 first-place votes for one’s own slate (which means 𝜋 = 𝑝 except
for BT models, which require calibration). Each model is designated by a different color, and the candidate
strength scenarios are denoted U, S, X, Y, as described above. The pairwise distances between profiles are
computed with 𝐿1 distance on the profiles. Each preference profile has 1000 ballots, and we have generated
10 profiles by each of the 16 model/strength pairs. As 𝑝 → 1, the main difference appearing in the models
is that the BT and PL profiles become tightly clustered for each candidate strength scenario, while the CS
profiles remain more variable.
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D FITTING TO SCOTTISH ELECTIONS
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Fig. 39. Histograms showing the distribution of swap distances to solid A-over-B ballots in nine Scottish
elections.

To conclude, we provide a full sweep of fitting outputs across the nine elections and various

models in this paper.

We start with tables of fitting data for the two elections highlighted in the body of the text:

Aberdeen Ward 12 and Falkirk Ward 6, 2017. In addition to optimizing the choice of 𝜋𝐵 , we also

simply use the first place vote share (FPV) and top-𝑘 Borda share.

Aberdeen Ward 12 2017 FPV 𝜋𝐵 𝑑Wass Borda 𝜋𝐵 𝑑Wass Opt. 𝜋𝐵 𝑑Wass

Name-PL 0.3332 0.8476 0.4079 1.4446 0.3338 0.8846

Name-BT 0.3332 1.9437 0.4079 1.6426 0.395 1.5827

Slate-PL 0.3332 3.2935 0.4079 1.9335 0.415 1.8544

Slate-BT 0.3332 10.4393 0.4079 7.6536 0.505 0.5936
CS (𝐵 =𝑊 ) 0.3332 1.9777 0.4079 2.3372 0.0788 0.5531
CS (𝐵 = 𝐶) 0.3332 1.2303 0.4079 0.8829 0.445 0.7082

Table 2. Wasserstein distances (𝑑Wass) from swap distance distributions of generative models to the swap
distance distribution of Aberdeen Ward 12 2017. The smallest three Wasserstein distances are bolded.

For the CS and Slate-type models, the candidate strength does not impact the ballot type and can

be ignored. For the Name models, we estimate strength using first-place votes for each candidate.
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Falkirk Ward 6 2017 FPV 𝜋𝐵 𝑑Wass Borda 𝜋𝐵 𝑑Wass Opt. 𝜋𝐵 𝑑Wass

Name-PL 0.3373 0.9901 0.4287 0.618 0.455 0.5819

Name-BT 0.3373 1.5758 0.4287 0.8319 0.4488 0.7939

Slate-PL 0.3373 1.3142 0.4287 0.4992 0.4388 0.4757

Slate-BT 0.3373 2.3792 0.4287 0.9821 0.4713 0.5025

CS (𝐵 =𝑊 ) 0.3373 0.6173 0.4287 0.9211 0.215 0.4459
CS (𝐵 = 𝐶) 0.3373 0.7639 0.4287 0.4553 0.4638 0.4237

Table 3. Wasserstein distances (𝑑Wass) from swap distance distributions of generative models to the swap
distance distribution of Falkirk Ward 6 2017. The smallest three Wasserstein distances are bolded.

We use Markov chain Monte Carlo (MCMC) methods to estimate the BT distribution in the two

elections with more than 11 candidates since it is costly to compute the probability density function

directly. In those cases we sample 10,000 ballots from the MCMC runs. All other simulations use

the same number of ballots as in the observed election.

Plots for all elections and models follow.
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Fig. 40. Bubble plots showing the distribution of swap distances from our generative models, solid-bloc voting,
and a real election to A-over-B ballots. Both the generative models and solid-bloc election are optimized via a
grid search to choose a value for 𝜋𝐵 that minimizes 𝑑Wass to the real Aberdeen Ward 12 2017 election.
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Fig. 41. Bubble plots showing the distribution of swap distances from our generative models, solid-bloc voting,
and a real election to A-over-B ballots. Both the generative models and solid-bloc election are optimized via a
grid search to choose a value for 𝜋𝐵 that minimizes 𝑑Wass to the real Aberdeen Ward 12 2022 election.
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Fig. 42. Bubble plots showing the distribution of swap distances from our generative models, solid-bloc voting,
and a real election to A-over-B ballots. Both the generative models and solid-bloc election are optimized via a
grid search to choose a value for 𝜋𝐵 that minimizes 𝑑Wass to the real Angus Ward 8 2012 election.
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Fig. 43. Bubble plots showing the distribution of swap distances from our generative models, solid-bloc voting,
and a real election to A-over-B ballots. Both the generative models and solid-bloc election are optimized via a
grid search to choose a value for 𝜋𝐵 that minimizes 𝑑Wass to the real Clackmannanshire Ward 2 2012 election.
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Fig. 44. Bubble plots showing the distribution of swap distances from our generative models, solid-bloc voting,
and a real election to A-over-B ballots. Both the generative models and solid-bloc election are optimized via a
grid search to choose a value for 𝜋𝐵 that minimizes 𝑑Wass to the real Falkirk Ward 6 2017 election.
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Fig. 45. Bubble plots showing the distribution of swap distances from our generative models, solid-bloc voting,
and a real election to A-over-B ballots. Both the generative models and solid-bloc election are optimized via a
grid search to choose a value for 𝜋𝐵 that minimizes 𝑑Wass to the real Fife Ward 21 2022 election.
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Fig. 46. Bubble plots showing the distribution of swap distances from our generative models, solid-bloc voting,
and a real election to A-over-B ballots. Both the generative models and solid-bloc election are optimized via a
grid search to choose a value for 𝜋𝐵 that minimizes 𝑑Wass to the real Glasgow Ward 16 2012 election.

, Vol. 1, No. 1, Article . Publication date: April 2024.



2745

2746

2747

2748

2749

2750

2751

2752

2753

2754

2755

2756

2757

2758

2759

2760

2761

2762

2763

2764

2765

2766

2767

2768

2769

2770

2771

2772

2773

2774

2775

2776

2777

2778

2779

2780

2781

2782

2783

2784

2785

2786

2787

2788

2789

2790

2791

2792

2793

56 Authors Redacted

Distance to solid ballot (A over B)

solid-bloc
 WD = 12.0026

 Opt. pi_B = 0.2945

north ayrshire ward_1 2022

CS Maj
 WD = 4.3605

Opt. pi_B = 0.0488

CS Min
 WD = 0.8477

Opt. pi_B = 0.0450

north ayrshire ward_1 2022 and CS
Optimized Cohesion

Distance to solid ballot (A over B)

solid-bloc
 WD = 12.0026

 Opt. pi_B = 0.2945

north ayrshire ward_1 2022

n-BT
 WD = 1.5811

Opt. pi_B = 0.2513

n-PL
 WD = 0.7433

Opt. pi_B = 0.2538

north ayrshire ward_1 2022 and name
Optimized Cohesion

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Distance to solid ballot (A over B)

solid-bloc
 WD = 12.0026

 Opt. pi_B = 0.2945

north ayrshire ward_1 2022

s-BT
 WD = 1.4038

Opt. pi_B = 0.1425

s-PL
 WD = 3.2683

Opt. pi_B = 0.3075

north ayrshire ward_1 2022 and slate
Optimized Cohesion

Fig. 47. Bubble plots showing the distribution of swap distances from our generative models, solid-bloc voting,
and a real election to A-over-B ballots. Both the generative models and solid-bloc election are optimized via a
grid search to choose a value for 𝜋𝐵 that minimizes 𝑑Wass to the real North Ayrshire Ward 1 2022 election.
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Fig. 48. Bubble plots showing the distribution of swap distances from our generative models, solid-bloc voting,
and a real election to A-over-B ballots. Both the generative models and solid-bloc election are optimized via a
grid search to choose a value for 𝜋𝐵 that minimizes 𝑑Wass to the real Renfrewshire Ward 1 2017 election.
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