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We investigate the prevalence of sample repetition in a Sequential Monte
Carlo (SMC) method recently introduced for political redistricting.

1. Introduction. In this note, we consider the structure of the SMC (Sequential Monte
Carlo) method developed by McCartan–Imai for sampling partitions of a fixed node-weighted
graph G into a given number k of connected subgraphs with nearly equal total weight (Mc-
Cartan and Imai, 2023). The main application is to redistricting, where the weight is by
population, so we will refer to the partition as a plan and its parts as districts. SMC operates
by fixing a sample size S and a number of districts k, then creating a top generation of partial
plans by marking off one connected subset of G with roughly 1/k of the total weight in each
plan (Figure 1, left). In the next generation, S agents sample with replacement from those
partial plans according to a weighting function; continuing the progress in the partial plan,
the agents then mark off a second subset of about the same size. This process continues for
k generations until the entire graph is marked. We will summarize the salient combinato-
rial features of this scheme in a descendancy diagram D (Figure 1, right), showing only the
paths that connect from the bottom layer to the top. The nodes of D involved in these paths
are called active or activated. The final generation consists of S complete partitions. This
is the method developed by the SMC authors to generate ensembles of random districting
plans, like the four complete plans at the bottom of Figure 1.

FIG 1. Simple example of partitioning a 4× 4 grid into four districts. The adjacency pattern of the grid is the
graph G, the number of districts is k = 4, and the size of the sample is S = 4. At right, the process is abstracted
into a descendancy diagram. The district marked last (green) does not have a row of the diagram, because it is
made up of area left over after the third district (orange) is marked.
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SMC samples face a certain amount of characteristic redundancy. As the authors note,
"because the SMC algorithm involves repeated resampling with replacement, for a finite
number of samples it can suffer from particle system collapse (Liu, Chen and Logvinenko,
2001), where many of the sampled plans share a small number of common districts (which
originate as common ancestor particles in the SMC scheme)." In practical terms, this means
that SMC samples can tend to have certain districts or sets of districts repeated many times
across plans, like the blue square at the top left of the grid in Figure 1, which appears in
3/4 of the final sample. One aim of this note is to study this concentration of ancestry in
combinatorial terms.

The second aim is to understand the tradeoffs faced by users in the choice of sampler.
Citing McCartan–Imai again: "Like MCMC algorithms, the SMC algorithm generates sam-
ples which approximate the target distribution arbitrarily well as the sample size increases."
Our second set of questions explores the convergence guarantees and practical diagnostics
available with SMC in relation to the production of various data artifacts used in redistricting
analysis, like histograms and boxplots. (See also Cannon et al. (2022) for more comparison
of methods.)

Diagnosing strengths and weaknesses of the method has important real-world value. This
is because SMC for redistricting, as implemented by the authors in the open-source package
Redist (Kenny et al.), is already in widespread use in courts of law. The repetition of dis-
tricts has been flagged as a limitation that undermines statistical claims about the sample.
For instance, mathematician Kristopher Tapp produced an affidavit in New York state Sen-
ate litigation in which he attempted a replication of another expert’s SMC ensemble of 5000
maps, and found that a certain set of 31 districts (covering about half of the state) appeared
identically in over 64% of the sample.1 In New Mexico state Senate litigation, a defense
brief described the SMC method as being "plagued with duplicate simulations"; as a pro-
phylactic measure to protect against this criticism, a defense expert cosmetically altered his
SMC sample by perturbing the boundaries of districts so that he could claim that no districts
were duplicated.2 It is clear that rigorous attention to the issues around duplication and the
consequences for statistical interpretation are greatly needed in the field.

1.1. Motivating questions. To understand the SMC algorithm for k districts, we will be-
gin by studying uniform descendancy diagrams with levels (also called layers or generations)
labeled i= 1 to k−1 from bottom to top, each of width S, in which each node chooses a par-
ent uniformly at random from the generation above. Nodes in the top layer (indexed k − 1)
represent partial plans with a single initial district marked, and those at level i represent
districting plans with k − i districts marked. At level 1, k − 1 districts are marked, which
determines the kth and final district and amounts to specifying a complete plan. A node in
a descendancy diagram is active if it has a descendant in the bottom layer, and surviving
ancestors are active nodes at the top level (so named because they have descendants in the
final population). Calculations using descendancy diagrams will omit all non-active nodes,
because they have no role in the final sample constructed by SMC.

1Tapp further notes that while an ensemble of 5000 63-district maps can have up to 315,000 distinct districts,
his replication ensemble had only 12,319, so that each district was repeated an average of 1360 times. He calls
this "a head-turning level of redundancy." (Tapp, 2022)

2"Dr. Chen’s implementation of the MCMC version of an SMC algorithm [sic] did not result in any dupli-
cated maps. [Exh. D, Dep. ST 54:17–55:17 (falsely testifying that Dr. Chen’s simulations contain duplicates),
136:6–136:20 (correcting his mistaken testimony)]." The opposing expert Sean Trende was no more sophisti-
cated, opining in deposition that "Duplicates happen all the time... So it doesn’t bother me, unless it gets extreme
to where you end up having, like, 20 maps." (NM Legislative Defendants, 2022)
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S = 10, k = 6

S = 12, k = 11

FIG 2. These two figures show structures we call descendancy diagrams. The bottom row is labeled as generation
1 in each case, increasing in index with each layer until generation k− 1 at the top. Each of these two diagrams
has A(D) = 2, meaning that there are two top-level ancestors from which all members of the bottom generation
are descended.

If we write D ∈D(S,k) for a specific diagram of this form, then let A(D) be the number
of surviving ancestors in that diagram, and let A(S,k) be the expected number of surviving
ancestors E(A(D)) as D ranges over the uniform distribution on D(S,k). We consider the
following questions.

FIG 3. The S = 12, k = 11 example is repeated, now with the diagram nodes decorated by their number of final-
generation descendants. High numbers appearing on low levels are markers of extreme redundancy.
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QUESTION 1 (Ancestor extinction). As a function of S and k, what is the distribution of
the number of surviving ancestors A(D) in a uniform descendancy diagram? Give bounds
or asymptotics for the expectation A(S,k).

QUESTION 2 (Extent of redundancy). Define G(D,j) to be the number of final plans
with at least j districts in common. How is that G distributed over D for each j?

For instance, see Figure 3. Seeing high numbers at low levels is an indicator of repetition.
In this case, there is one district that appears in 11 out of 12 final plans (value 11 appearing
in top row). Worse than that, it is part of a group of 3 districts that appear identically in those
11 plans (value 11 in row 8 = k− 3). Also, there is a group of 7 districts that appears in 8 out
of 12 final plans (value 8 in row 4 = k− 7). So for the sample of plans constructed according
to this diagram D, we have G(D,3) = 11 and G(D,7) = 8.

The questions so far concern the combinatorics of descendancy diagrams, but the combi-
natorics is only one source of redundancy. It turns out to be compounded by several other
factors. One compounding factor is the non-uniformity of weights in the intermediate gener-
ations that are used when the each generation picks its parents. A second factor is the graph
being partitioned, which can start to have bottlenecks obstructing further district selection if
the first few have been marked in an unlucky way.

QUESTION 3 (Weighting and graph topology). How do ancestry concentration and re-
dundancy get more severe as the weighting factors deviate from uniform, and when realistic
graphs are used as the basis for the partition?

Finally, we broaden the scope and consider the overall quality of the ensemble of S plans
that consists of members of the final generation.

QUESTION 4 (Convergence guarantees). What are the convergence guarantees for the
sampling distribution obtained from the weak SMC Central Limit Theorem (McCartan and
Imai, 2023, Prop 4.2)? How do they limit the extent of redundancy?

QUESTION 5 (Summary statistics). How do the convergence guarantees and diagnostics
relate to the production of histograms, boxplots, and other percentile summary statistics?

There are many other elements of the SMC code as implemented in Redist that pull results
away from the simplicity of descendancy diagrams, besides those already mentioned (inter-
generational weighting factors and bottlenecks in the graph topology). Another example is
that SMC creates sequentially labeled districting plans but seeks to sample unlabeled plans;
this is addressed with a corrective factor ψ for which a second, auxiliary round of Monte
Carlo estimation was described in the paper when sampling plans with k > 13 districts.3

Another example is a final reweighting step to align the sample more closely with the target
distribution.

The validation datasets employed in the article introducing SMC are graphs with 36 and 50
nodes and k = 3,4,6 districts; it is not at all clear that some of the challenges faced by SMC
will become visible at that scale. The New York Senate case, in which the judge gave some
credence to SMC ensemble made with default settings, had over 16,000 nodes and k = 63
districts.

3Some district configurations have many more ways of being sequentially labeled than others; this can produce
distortion factors of over a million in practice. A corrective factor ψ is described in §4.4.2 of McCartan and Imai
(2023).
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Finally, it is very important to highlight that most of the SMC samples appearing in ex-
pert work, as well as the published work of the SMC authors, use small samples. Typically,
sample sizes of 5000 are presented based on a single run at S = 5000 or by combining and
subsampling multiple runs with S = 2500.4 Thus for practical purposes, SMC sampling is
currently engineered to be performed with multiple small runs, not with sample sizes in the
millions.

Below, we will alternate between trying to isolate the effects of different features of the
SMC sampler and simply reporting outcomes when the code is run. This produces both a
theoretical and a practical analysis.

Acknowledgments. We are grateful to Peter Rock for his excellent work conducting SMC
experiments to support this project, building on his development of Python wrappers for the
core Redist functionality. Replication repo at github.com/mggg/SMC-repetition.
We thank Cory McCartan for sharing his time to explain SMC for redistricting and the Redist
code, as well as for feedback and a correction on an earlier draft of this note. We thank Peter
Winkler and Chris Hoffman for helpful conversations and pointers to the literature. This
material is based upon work supported by the National Science Foundation under Grant No.
DMS-1928930 and by the Alfred P. Sloan Foundation under grant G-2021-16778, while the
authors were in residence at the Simons Laufer Mathematical Sciences Institute (formerly
MSRI) during the Fall 2023 semester. SC is also supported in part by NSF CCF-2104795;
MD by NSF DMS-2005512.

2. Structure of descendancy diagrams. This section presents theoretical results, de-
rived from the combinatorics of the descendancy diagrams, that allow us to bound theA(S,k)
values and begin to explain the expected behavior of collisions. We start by providing a
Markov chain formulation for calculating exact values of A(S,k) before providing more
computationally efficient bounds on asymptotic behavior in terms of two recursive sequences.
We conclude by examining the effect of weighting factors at each layer, proving that uniform
choices minimize collisions and evaluating how much the non-uniformity explains the repe-
titions found in empirical data.

2.1. Setup. We start with some simple observations about this model. When we take
a uniform descendancy diagram with two layers (corresponding to an SMC process with
three districts), Question 1 is a rephrasing of the classic birthday problem from probabil-
ity. As k grows, the generalized birthday problem also has a combinatorial interpretation
as a sequential balls-in-bins model (see Raab and Steger (1998)) or via random coagula-
tions (see Bertoin (2006)). Even in the language of ancestry, this has been studied in the
context of genetic drift as the Wright-Fisher Model (see Durrett (2008)). It is well known
that the probability that two individuals’ lineages remain distinct for at least i levels is
(1 − 1/S)i and the probability that ℓ lineages remain (pairwise) distinct for at least i lev-
els is (1− 1/S)i(1− 2/S)i . . . (1− (ℓ− 1)/S)i. After renormalizing and sending S →∞,
the time of the first (pairwise) coalescence among ℓ distinct lineages approaches an exponen-
tial distribution with rate ℓ(ℓ− 1)/(2S). There is a rich literature considering variations of
this model, using it to design Markov chains, and extending it to infinite S.

4The largest sample sizes we have found in the SMC 50-state data repository are at S = 30,000 (McCartan
et al., 2022). Our independent attempts to produce large runs can reach S = 100,000 on certain states, but it is
difficult to get past that size using basic professional-level computer resources. This is because the Redist SMC
code has significant memory overhead associated with storing partial plans. Even on a medium-sized problem
like redistricting Pennsylvania into k = 18 districts at the precinct level, a run with S = 100,000 consumes over
25 GB of RAM.

https://github.com/mggg/SMC-repetition
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Our setting differs slightly from the Wright-Fisher model by only considering lineages
that extend to the bottom layer and discarding the others—in the language developed above,
we only track active nodes.

LEMMA 2.1 (One-step probabilities). If a given generation i has 1≤ t≤ S active nodes,
then the expected number of ancestors in the generation immediately above (generation i+1)
is S−S(1− 1

S )
t. The probability that there are exactly v activated nodes in generation i+1

when there are t activated nodes in generation i is P (v, t,S) =
(
S
v

)∑v
i=0(−1)v−i

(
v
i

) (
i
S

)t.
PROOF. In generation i + 1, let Ij be an indicator variable representing node j being

chosen at least once. For any individual 1≤ j ≤ S we have P[Ij = 1] = 1− (1− 1
S )

t. Then
the number of activated nodes is

∑S
j=1 Ij , and by linearity of expectation its expected value

is S − S(1− 1
S )

t, as desired.
The second statement is a birthday problem variant. For each set of

(
S
v

)
parents the proba-

bility that all edges end up in that set is
(
v
S

)t and applying inclusion/exclusion to account for
versions that don’t select every element in that set gives the desired result.

With this lemma we can can compute the expected value across two or more generations
exactly, but the formula does not give much insight, so we omit it.

We can reformulate the problem as a Markov chain on the states 1,2,3, . . . , s represent-
ing the number of activated nodes at a given layer. This is an absorbing Markov chain with

absorbing state 1, with transition probabilities given by Mi,j =

{
P (i, j, s) i≥ j

0 i < j
, forming a

lower-triangular transition matrix. The expectation we seek isA(S,k) =
[
0 0 · · · 1

]
Mk−2

[ 1
2
...
S

]
.

For example, when S = 3, we have M =

 1 0 0
1/3 2/3 0
1/9 6/9 2/9

 and for diagrams with two layers

(k = 3) we have that the three nodes have an expected 19/9 = 2.111... parents.

2.2. Limiting behavior. A(S,k) is defined as the expected number of top nodes sur-
viving to the bottom over diagrams D ∈ D(S,k). First, observe that for fixed S, we have
lim
k→∞

A(S,k) = 1. This follows directly from the Markov chain interpretation of the prob-

lem, because it is a non-increasing sequence of positive integers with a positive probability
of strict decrease at each step while the value is greater than 1.

Given S, construct a sequence of coefficients as follows: aS,0 = 1; and aS,i+1 = 1 −(
1− 1

S

)(aS,i)S . Where S is understood to be fixed we will write simply a0 = 1, ai+1 =

1−
(
1− 1

S

)aiS . By Lemma 2.1, these approximate the share of active nodes at a given level
of the diagram: aiS ≈A(S, i). We will get a rigorous upper bound below.

Note that as S gets large,
(
1− 1

S

)S rapidly converges to 1/e from below. With this in
mind, we can offer an second approximation with a sequence given by b0 = 1; and bi+1 =

1− 1
e

bi , which is more likely to have a useful generating function, if an analytic description
is desired. Table 1 and Figure 4 show the bi to be close to aS,i for large S—and show that
bi ≤A(S, i)≤ aS,i in all instances we investigated.
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i 0 1 2 3 4 5 6 7 8 9 10

a10,i 1 0.6513 0.4965 0.4073 0.3490 0.3077 0.2769 0.253 0.234 0.2185 0.2056
a100,i 1 0.6340 0.4712 0.3772 0.3155 0.2718 0.2390 0.2135 0.1056 0.1931 0.1625
a1000,i 1 0.6323 0.4688 0.3744 0.3124 0.2684 0.2355 0.2099 0.1895 0.1727 0.1587
a5000,i 1 0.6322 0.4686 0.3741 0.3121 0.2682 0.2352 0.2096 0.1891 0.1723 0.1583

bi 1 0.6321 0.4685 0.3741 0.3121 0.2681 0.2352 0.2095 0.1890 0.1723 0.1582
TABLE 1

Values of aS,i for S ∈ {10,100,1000,5000} and 0≤ i≤ 10. As S grows, the aS,i and bi get close.

LEMMA 2.2. For fixed S > 1 and ai = aS,i, we have lim
i→∞

ai =
1
S .

PROOF. First, we show by induction that ai ≥ 1/S for all i. This is clearly true for a0 = 1.
If ai ≥ 1/S, then aiS ≥ 1 and

ai+1 = 1−
(
1− 1

S

)aiS

≥ 1−
(
1− 1

S

)1

=
1

S
.

We will also need the following fact, which follows from the inequality 1 + c < ec for c =
1/(S − 1) ̸= 0:

(1) −
(
1− 1

S

)
ln

(
1− 1

S

)S

< 1.

As we know ai+1 = 1−
(
1− 1

S

)aiS , we will focus on the function f(x) = 1−
(
1− 1

S

)xS .
We begin by noting f( 1S ) =

1
S . We also see that

f ′(x) =−
(
1− 1

S

)Sx

ln

(
1− 1

S

)S

Equation (1) tells us that f ′( 1S )< 1. For x≥ 1
S , the values we are interested in, this slope is

always positive (because ln
(
1− 1

S

)S is negative) and is strictly decreasing in x. This implies
for x > 1

S , f(x) is strictly bounded above by the line tangent to it at 1/S:

f(x)< f

(
1

S

)
+ f ′

(
1

S

)(
x− 1

S

)
=

1

S
+ f ′

(
1

S

)(
x− 1

S

)
First, we will show the sequence of ai’s is decreasing. Using f ′( 1S )< 1, we see

ai+1 = f(ai)<
1

S
+ f ′

(
1

S

)(
ai −

1

S

)
<

1

S
+ ai −

1

S
= ai

As the sequence of ai’s is bounded below by 1
S and strictly decreasing, its limit must exist.

Suppose, for the sake of contradiction, that the limit of the ai’s is strictly greater than 1/S,
that is, it is 1/S + α for some α > 0. This means for all ε > 0, there is some sufficiently
large i such that ai < 1/S +α+ ε. Choose ε such that 0< ε< α(1− f ′( 1S ))/f

′( 1S ). This is
possible to do because α> 0 and f ′( 1S )< 1. Note this choice of ε means f ′( 1S )(α+ ε)<α.
It follows that:

ai+1 = f(ai)<
1

S
+ f ′

(
1

S

)(
ai −

1

S

)
<

1

S
+ f ′

(
1

S

)
(α+ ε)<

1

S
+ α.

As this is a monotone decreasing sequence and we assumed its limit was 1
S +α, it is impossi-

ble to have ai+1 <
1
S + α, giving a contradiction. Therefore it must be the case that the limit

of this sequence is 1
S , as claimed.
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PROPOSITION 2.3. A(S,k)≤ akS.

PROOF. Let Xi be a random variable denoting the number of active nodes at level i (those
that have descendants in level 1). Thus X1 ≡ S. We are trying to get bounds on E[Xk−1] =
A(S,k), the expected number of active nodes in the top level of a k-district descendancy
diagram, which has k− 1 levels.

We will prove by induction that E[Xi] ≤ aiS, which suffices to prove the proposition.
When i = 0, we have E[X0] = a0S = S, and the statement is true. Fix i ≥ 1, and suppose
E[Xi]≤ aiS. By Lemma 2.1 and linearity of expectation, we have

E[Xi+1 |Xi] = S − S

(
1− 1

S

)Xi

.

We will use the Law of Total Expectation (E[Xi+1] = E[E[Xi+1 |Xi]]) and Jensen’s In-
equality (for c > 0, E[cX ]≥ cE[X]). We get

E[Xi+1] = E[E[Xi+1 |Xi]] = E

[
S − S

(
1− 1

S

)Xi

]
= S − SE

[(
1− 1

S

)Xi

]

≤ S − S

(
1− 1

S

)E[Xi]

≤ S − S

(
1− 1

S

)aiS

= ai+1S.

REMARK 2.4. While we only show akS is an upper bound, for large k it is tight: in the
limit as k→∞, it matches the trivial lower bound E[Xk]≥ 1, which holds because there is
at least one active node at each level. The empirical results, such as those presented in Figure
4, suggest the much stronger asymptotic A(S,k)∼ akS as S,k→∞.

A
(S
,k
)

k

FIG 4. If the distribution of weights is uniform, these plots show the expected number of surviving ancestors
(districts drawn in the initial generation that appear in the final sample of plans) as k grows, for S = 5,20,50. The
horizontal axis is k in each plot and the vertical axis is the expected number of surviving ancestors. Green stars
are precise outputs from the Markov chain expression, compared to the akS values in orange and the bkS values
in purple (each interpolated by a curve). In these small experiments, it is always true that bkS ≤A(S,k)≤ akS,
and that akS ≈A(S,k) is a very good approximation.

Table 2 shows that the predicted repetition (due to combinatorial collision expected under
uniform weighting) is already pronounced, but empirical runs on real-world geography show
far greater redundancy. We include k = 18 (PA Congress 2010), k = 42 (NM state House),
k = 52 (CA Congress 2020), k = 63 (NY State House), and k = 203 (PA State House).5

5The Redist software has a built-in feature to warn users about "low plan diversity." This warning message
was triggered in 19/1000 PA Congressional runs, 534/1000 NM House runs, 939/1000 CA Congressional runs,
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PA NM CA NY PA
Congress House Congress House House
k = 18 k = 42 k = 52 k = 63 k = 203

a5000,k 0.1066 0.0466 0.0377 0.0313 0.0099
bk 0.1065 0.0464 0.0376 0.0312 0.0098

predicted average repetition
9.4 21.6 26.6 32.1 102.0

1/a≈ S/A

average district repetition
18.2 121.6 518.6 785.1 4905.0

(averaged over trials)
max district repetition

498.9 1896.9 3104.8 3350.8 4977.1
(averaged over trials)
max district repetition

4515 4951 5000 5000 5000
(max over trials)

TABLE 2
For several realistic-sized problems, we consider the expected repetition of the initial districts that survive to the

final sample. We report 1/a as predicted average repetition because it is a known bound that is quite tight
already for small S. We conduct 1000 trials with S = 5000 for each column; completing one trial with k = 203
can take up to five days. The fact that the observed average repetition is appreciably more severe than predicted

points to the impact of other causes of redundancy, like non-uniform weights, graph bottlenecks, and final
reweighting—these have a snowballing impact as the number of districts grows. These will be explored below.

REMARK 2.5. The case of square diagrams is a natural one to consider. Numerical results
suggest that A(S,S) limits to a constant slightly greater than 2. Subsequently, once there are
two active nodes in a population of S, it takes an expected S more steps for those to collide,
leaving a single common ancestor. This suggests that when k ≈ 2S, we expect the ancestry
to collapse to a single node—one initial district will appear in every plan. This will be further
discussed below in Table 3.

2.3. Non-uniform weights. Above we assumed that each active node chooses its parent
uniformly at random. In practice, this is not how the SMC code works; the weights depend
on graph properties of the partitions. The weight on node j at level i is given by w

(j)
i =

(τ(G(j)
i ))

ρ−1

|∂G(j)
i | , where the numerator is τ , the product of the number of spanning trees in the

pieces of the partial plan G(j)
i , raised to a power ρ− 1, and the denominator is the size of the

edge cut.
When ρ ̸= 1 these weight factors will give wildly different probability of selection to plans

based on their compactness, due to τ values for districts that can easily differ by 10100 in
realistic problems.6 Even at ρ= 1, plans with longer boundaries will be weighted down. (See
Figure 5 for an empirical example with ρ= 1.) These inter-generational weights thus present
a compactness-related bias pulling away from uniformity for any choice of parameters.

984/1000 NY House runs, and every PA House run. The message counsels users to "Consider weakening or
removing constraints, or increasing the population tolerance." It is unclear how this kind of challenge was handled
in the expert work cited in this note. Furthermore, restricting to runs that do not trigger a warning message does
not improve the repetition enormously. In the same trials from Table 2, the max district repetition out of 5000
plans got as high as 2866 (PA-Cong), 4817 (NM-House), 4983 (CA-Cong), and 4622 (NY-House), even among
runs with no low-diversity warning.

6In particular, τ > eN for many planar graphs on N vertices (for instance τ ∼ e1.6N for triangular lattices),
and Congressional districts might typically contain N = 500 precincts. This is one reason that validating on a
6 × 6 grid with 6 districts is inadequate to see salient effects of scale: in that setting, τ values for individual
districts can only differ by a factor of 15. See related discussion in DeFord, Duchin and Solomon (2021, §5.1).
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FIG 5. Truncation of a long-tailed histogram of weights in a descendancy diagram on state Senate districts in New
Mexico (k = 42, i= 10, S = 5000, default settings). If weights were uniform, the distribution of weights would be
concentrated at the red line. Instead, when drawing the 33rd district in this SMC process, some 32-district partial
plans are over 100 times likelier than others to be chosen.

Next we show that non-uniform weights exacerbate the sample repetition. Recall that Xi

was a random variable denoting the number of active nodes at level i, where X1 ≡ S and
parents are chosen uniformly at random at each level. We now set up our second model by
fixing some non-uniform distribution over S nodes at each level 1, . . . , k− 2 for the selection
of parents. Fixing those distributions, we initialize Y1 ≡ S, and let Yi be a random variable
denoting the number of active nodes at level iwith the specified parent selection probabilities.

LEMMA 2.6 (Uniform descendancy minimizes ancestor collapse). For i≥ 2, let Xi give
the count of active nodes at level i randomized over uniform descendancy diagrams, while
Yi is defined instead with the same non-uniform distribution on each level. Then

E[Yi | Yi−1 = a]≤ E[Xi |Xi−1 = a].

PROOF. Consider the random variable Yi. For j ∈ {1,2, . . . , S}, let pj denote the proba-
bility that an individual at level i− 1 chooses j as their parent in level i (note the pj’s may
also vary with i). We will need Hölder’s Inequality, which states that for p, q ∈ [1,∞) satis-
fying 1/p+ 1/q = 1 and any two vectors u and v, ∥⟨u,v⟩∥1 ≤ ∥u∥p∥v∥q . We apply this to
the vectors u where uj = (1− pj)/(S − 1) and v= (1,1,1, . . . ,1). Note

∥⟨u,v⟩∥1 = ∥u∥1 =
S∑

j=1

1− pj
S − 1

= 1.

Using p= a and q = a/(a− 1), we see that

∥u∥a =

 S∑
j=1

(
1− pj
S − 1

)a
1/a

=

 1

(S − 1)a

S∑
j=1

(1− pj)
a

1/a

∥v∥a/(a−1) =

 S∑
j=1

1a/(a−1)

(a−1)/a

= S(a−1)/a
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Putting this together with Hölder’s inequality, we see that 1

(S − 1)a

S∑
j=1

(1− pj)
a

1/a

S(a−1)/a ≥ 1 and
S∑

j=1

(1−pj)a ≥
(S − 1)a

Sa−1
= S

(
1− 1

S

)a

.

We now see that

E[Yi | Yi−1 = a] =

S∑
j=1

(1− (1− pj)
a) = S −

S∑
j=1

(1− pj)
a

≤ S − S

(
1− 1

S

)a

= S

(
1−

(
1− 1

s

)a)
= E[Xi |Xi−1 = a].

This completes the proof.

We find empirically that the weights at each level frequently have a distribution shaped
like the one shown in Figure 5, which was drawn from a run on New Mexico state Senate
districts. In New Mexico, it was common to see max-to-median weight ratios of 10 within
a generation, and max-to-min ratios of 30, even with ρ= 1. In New York’s Senate districts,
these ratios were commonly 30 and 2000, respectively. As we will see, skews of this kind
will tend to significantly increase the collision rate.

Lowest level with a "mega-ancestor" accounting for φ share of the final outputs
(Low table entries for high φ are signs of extreme redundancy)

F S = 10 100 1000 5000

φ= .01 — — 3.8 15.4
.1 — 5.5 51.1 256.3
.25 2.5 18.7 188.3 957.8
.5 5.5 60.2 622.2 3187.3
.75 14.6 144.7 1433.5 7092.4
1 17.9 201.9 2065.2 9966.2

Uniform weights

F S = 10 100 1000 5000

φ= .01 — — 2.0 2.0
.1 — 2.0 4.6 78.4
.25 2.0 2.0 19.7 320.1
.5 2.0 2.8 65.8 1032.7
.75 2.0 5.3 151.7 2401.9
1 2.7 11.1 232.3 3533.2

100 : 1 : 1 · · · : 1 weights

NM NY
F k = 42 k = 63

S = 5000 S = 5000

φ= .01 3.2 (100%) 2.9 (100%)
.1 8.8 (100%) 6.9 (100%)
.25 14.9 (71.4%) 11.9 (99%)
.5 17.0 (23.5%) 18.8 (74%)

Actual runs of SMC code

TABLE 3
F (D,φ) reports the lowest level at which some node is an ancestor to φ share of the bottom generation. (This is
vacuous if φS ≤ 1.) The tables show estimated expectations for F (D,φ) with uniform weights and with stylized
non-uniform weights. Each cell value is obtained by averaging over 1000 trials. Reading across the bottom row

in the case of uniform weights (top left) confirms that A(S,2S)≈ 1. Collapse is much worse with stylized
non-uniform weights (top right). However, the actual runs on New Mexico and New York (bottom) show that the
empirical repetition can be far greater than either prediction. For instance, the NM cell at φ= .25 tells us that
714 out of 1000 trials in New Mexico had a node serving as ancestor to 25% of the final generation, and that
node on average occurred at level 14.9 (meaning 25% of the plans had 42− 15 = 27 districts in common).
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Recall that one goal (Question 2) is to measure the distribution of statisticsG(D,j) defined
as the number of final plans in D with j districts exactly in common. A mathematically more
natural expression that contains the needed information but is a bit harder to phrase in English
is F (D,φ), the lowest level at which there is a "mega-ancestor" accounting for φ share of
the final generation:

F (D,φ) := min{i : ∃ j with d(i, j)>φ · S}.

Table 3 shows an simulated comparison of F (D,φ) between the case of uniform weights
and a simple non-uniform setup where one node at each layer is 100 times more likely to
be selected than each of the others (that is, the weights are 100 : 1 : 1 · · · : 1). Each are run
1000 times. As we would expect given Lemma 2.6, the ancestor collapse is accelerated in the
non-uniform case. But even this significantly understates the actual repetition in 1000 runs to
make SMC samples from New Mexico and New York; we can compare this as well to Tapp’s
expert affidavit finding roughly that F (D, .6) < 31 for a S = 5000 sample in New York.
The excess degeneracy in real-world samples is partly because the graph partition step itself
can boost repetition; if partial progress has created a hard-to-split remainder, this creates yet
another scenario in which a generation may be filled out with repeats. (This is referred to as
graph "bottlenecks" elsewhere in this note.)

Figure 6 turns this around and shows the distribution of G(D,j), the number of plans with
j districts in common, for the same 1000 SMC runs on the New Mexico Senate. Though the
redundancy is striking in New Mexico, it is even worse in New York, the other real-world
example we track throughout this note.

Observed G(D,j) for New Mexico runs

FIG 6. We now recast the information from the same 1000 SMC runs to spell out the redundancy. The histograms
show how many plans have a set of j districts exactly in common. A few observations are visible in the marked
areas. On several runs, more than 98% of outputs shared 20 districts out of 42 exactly in common. On several
runs, more than 90% of outputs shared 30 districts exactly in common. And finally, more than 1/4 of the runs have
50 or more plans in their outputs that are nearly identical statewide, sharing 40 out of 42 districts. These plots
are from New Mexico; the effects in New York are still more extreme.
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3. Convergence guarantees and diagnostics. In McCartan and Imai (2023), the main
convergence result is a weak central limit theorem stated as follows.

PROPOSITION 3.1 (McCartan–Imai Prop 4.2). Let πS =
∑S

j=1w
(j)δ[ξ(j)] be the weighted

particle approximation generated by [their SMC Algorithm]. Then for all measurable h on
unlabeled plans, as S→∞,

√
S (EπS

[h ([ξ])]−Eπ [h ([ξ])])
d−→N (0, VSMC(h))

for some asymptotic variance VSMC(h).

As the authors note, this is convergence in probability rather than almost sure conver-
gence. This style of convergence result does not rule out significant sample repetition.7 To
understand the guarantees better, consider the following construction.

EXAMPLE (Controlled repetition sampler (CRS)). Fix a parameter 0< α < 1/2. Given
a distribution π on a state space Ω, let the controlled repetition sampler with parameter α be
defined as follows: a sample of size S is constructed by taking one draw x ∼ π and adding
x to the sample ⌈Sα⌉ times, each with weight 1/S. Next, create a smaller SMC sample of
S′ = S − ⌈Sα⌉ plans. If a plan in this smaller sample is assigned weight w(j) by SMC, we
add it to our CRS sample with normalized weight w(j)S′/S.

Despite the amount of repetition present, where up to
√
S plans in the sample of S are

fully identical, this CRS method still satisfies the conclusions of Proposition 3.1. (This is
proved in Appendix A.) Note that the power Sα could be replaced with any function of S
such that f(S)/

√
S − f(S)→ 0.

Of course, since
√
S/S→ 0, the first and simplest way to minimize the effects of repetition

is to employ very large samples. When large samples are computationally expensive, one
may be tempted to combine multiple separate samples rather than enlarging a single sample.
Indeed, in their small validation example (dividing the 6 × 6 grid into k = 6 districts) the
SMC authors have averaged 24 independent runs to obtain the estimates shown in McCartan
and Imai (2023, Fig 4) rather than enlarging the size of a single sample past S = 10,000.
In other published work (McCartan et al., 2022), the same authors and collaborators present
ensembles of 5000 maps for all 50 states, and do so in most cases by combining subsamples
from multiple SMC runs. But we know of no theory for this: it is not clear what balance of
the sample size S and the number of separate runs would constitute best practices for users
of SMC for redistricting.8

In SMC/Redist, the main convergence diagnostic is the Gelman–Rubin R̂ statistic, which
compares within-sample variance to between-sample variance, typically applied to batches
of 2500 or 5000 plans.9 Discussing related issues for MCMC, Charles Geyer (Geyer, 2011)
wrote of several popular techniques for using many short runs in place of one long run as
"worse than useless": they raise your confidence and produce cosmetically better samples
while giving no reason to believe the outputs are close to the target. For now, the computa-
tional costs of SMC/Redist lock users in to a many-short-runs framework.

7Indeed, even stronger central limit theorems like those for Markov chains do not rule out this level of rep-
etition, but observed repetition is far less severe for Markov chain methods than for SMC in the redistricting
application—and, in any case, they admit far larger samples with current methods.

8For the illustrative example CRS, the ideal structure would be many samples of size 1. For SMC, this would
fail, because a large S is already needed for the reweighting of the final sample to take the J term in the target
distribution into account at all.

9Information on the R̂ diagnostic can be found at Gelman and Rubin (1992); Vehtari et al. (June 2021).
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4. Discussion. Since spanning tree methods were introduced in redistricting around
2018, many authors who need a single exemplar of a plan (such as to serve as the start-
ing point for a Markov chain) obtain one by recursively partitioning a tree down to districts.
One way to view SMC for redistricting is that it constructs the whole sample by running this
seeding process many times. Employing the structure of a descendancy diagram allows the
use of weights that help control the properties of the sample, but at the cost of introducing
significant combinatorial redundancy.

Repetition undermines statistical conclusions and data visualization.. SMC is sometimes
claimed to produce nearly independent samples from arbitrary distributions.10 However, dis-
trict repetition can create massive dependencies, with many plans being identical on large
regions, for the sample sizes currently possible with SMC/Redist. Numerous factors that are
present in real use cases—non-uniform weights stemming from compactness terms and re-
stricted choices in the decision tree caused by the connection topology of the state, among
others—can contribute to extreme repetition, which is visible in plots. A highly redundant
sample does not allow for reliable outlier analysis because its percentile statistics will often
be far from those of the target distribution—for instance, if 20% of a sample had repeated
or identical features, that would manifestly call into question its usefulness to identify 1%
outliers. To put the same point in visual terms: significant repetition clearly undermines the
use of an SMC ensemble to infer the shape of a distribution of summary statistics, such as
in histograms and boxplots. If statistics such as R̂ are used as diagnostics on a histogram,
they should be applied to the height of each bar. A box-and-whiskers plot on Pennsylvania,
as shown in McCartan and Imai (2023, Fig 7), would need 90 R̂ calculations (top whisker,
third quartile, median, first quartile, bottom whisker for each district).11

Final reweighting cannot compensate for small samples.. The SMC process leverages
importance sampling by constructing an initial sample through a descendancy diagram and
then reweighting according to the target distribution π only when the sample is complete.
Before the final reweighting, the sample is approximately distributed by the spanning tree
distribution τ on partitions—but somewhat distorted by repetition, labeling bias, and other
artifacts of the construction. The authors intend to use this method to target arbitrary dis-
tributions π(ξ)∝ e−J(ξ)τ(ξ)ρ, but, in particular, the energy functional J is never used until
the descendancy diagram is complete; partitions that are never encountered by the tree-based
generation process cannot be rescued by reweighting. Thus attempts to target a general π with
SMC will fare no better than applying one-shot reweighting to previously known methods to
sample from τ , such as MCMC.12 The accuracy depends on emitting a large and diverse
sample from the descendancy process. With samples in the tens of thousands on practical
problems, many legally relevant events will never be observed—by contrast, current Markov
chain methods for sampling from τ can be run to billions of (accepted) steps.

All-purpose SMC ensembles are unsuited for novel measurements.. Courts have often
expressed an interest in the presence of individual districts with particular properties. For in-
stance, in the litigation challenging the Pennsylvania Congressional plan, the court strongly
discouraged the division of Pittsburgh across two districts (and the special master was said

10For instance, this was at one point explicit in the Redist documentation at https://perma.cc/YV37-JZNR.
11See Clelland et al. (2021) for an example where a diagnostic metric, in that case the Kolmogorov–Smirnov

statistic, is used in this way to support a box-and-whiskers plot.
12If J decomposes into a district-by-district score, then there is a way to take it into account in the intergener-

ational weights, but this is not done by default and it is not available for general J .

https://perma.cc/YV37-JZNR
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to treat it as a "disqualifying feature" of a plan).13 This preference emerged long after the
initial expert work had been conducted. In the New Mexico legal challenge, the parties to
litigation debated whether it was disqualifying if any district "contains more than 60% of the
state’s active oil wells."14 These examples illustrate that it will frequently be legally relevant
to know if some district-level property is common in a neutrally constructed ensemble. If the
most-repeated district in some Pennsylvania SMC run happens to divide Pittsburgh, say, the
ensemble can give a highly misleading answer. Ensembles constructed with current method-
ology, including the ALARM ensembles published in Scientific Data (McCartan et al., 2022),
are unsuited for estimating the frequency with which district-level properties occur, beyond
those properties tested at the time of data generation.15

All issues compound with large numbers of districts.. Large numbers of districts (large
k) exacerbate all of the problems described here.16 The published validation efforts only go
up to k ≤ 6 districts, and the authors themselves have used subdivision to make the problem
more tractable—the ALARM 50-state project breaks up Texas (k = 38), Florida (k = 27),
and California (k = 52) into three or more pieces, assembling statewide Congressional plans
by combining smaller runs on separate regions.17 Ensembles that have been modularized in
this way have an unknown relationship to the target distribution on the full state.

SMC for redistricting is a highly valuable addition to the literature on sampling methods
for graph partitioning. In addition to the theoretical contribution, the Redist package that
implements SMC is commendably well-documented and user-friendly, and its authors have
designed default settings that allow beginners to complete runs on many full-sized problems.
Also notably, the main code faced by users of Redist is in R, a programming language that is
popular in social science graduate training. This has created the conditions for even first-time
users of graph algorithms to generate materials for expert reports in court cases across the
United States, but without a deep understanding of diagnostics and limitations.18

In this note, we show that the combinatorics of descendancy diagrams combines with a
host of other factors to create potentially severe district repetition in SMC samples. In most
cases at the full problem scale of a U.S. state, minimizing the effects of repetition would call
for far larger sample sizes than is currently possible. Issues compound when attempting to
target distributions that differ from the spanning tree distribution τ or when the plans have
more than about a dozen districts. All of these observations counsel caution in using SMC on
full-scale redistricting problems.

13Carter v. Chapman (2022), see https://www.pacourts.us/assets/opinions/Supreme/out/J-20-2022mo.pdf.
14Republican Party vs. Oliver (2023), see nmlegis.gov links, particularly Plaintiff’s Opposed Motion to

Exclude Expert Report & Expert Testimony of Dr. Jowei Chen (NM Legislative Defendants, 2022).
15In McCartan et al. (2022), the R̂ statistic is used on a preset list of metrics: "Finally, we evaluate the conver-

gence of the algorithm for the specific set of summary statistics described above that are of interest to practition-
ers." It is unclear exactly how R̂ is being applied.

16Even with small numbers of districts, there can be issues: if few districts have many units, then the inter-
generational weights can be highly non-uniform, which will likewise boost repetition. We suspect this is a real
but less severe worry.

17See Texas, Florida, and California README files from the ALARM 50-state project.
18Experts indicating that SMC/Redist was their first exposure to graph algorithms, and sometimes even to

algorithmic sampling methods more broadly, filed reports not only in New Mexico and New York, but also North
Carolina, Pennsylvania, Louisiana, and Texas, and possibly more. As far as we encountered, they did not discuss
convergence diagnostics or warning messages about sample diversity in their expert reports or filings.

https://www.pacourts.us/assets/opinions/Supreme/out/J-20-2022mo.pdf
https://www.nmlegis.gov/Redistricting2021/LitigationDocuments
https://github.com/alarm-redist/fifty-states/blob/main/analyses/TX_cd_2020/doc_TX_cd_2020.md
https://github.com/alarm-redist/fifty-states/blob/main/analyses/FL_cd_2020/doc_FL_cd_2020.md
https://github.com/alarm-redist/fifty-states/blob/main/analyses/CA_cd_2020/doc_CA_cd_2020.md
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APPENDIX A: WEAK CLT FOR CONTROLLED REPETITION SAMPLER

PROPOSITION A.1. For any 0<α< 1/2, the controlled repetition sampler with param-
eter α satisfies

√
S (EπS

[h ([ξ])]−Eπ [h ([ξ])])
d−→N (0, Vα(h))

for any measurable function h, where Vα is an asymptotic variance.

PROOF. We will use πS′ to denote the distribution for the SMC sample of size S′ used
above (before it is reweighted by S′/S), and πS to denote our complete sample of size S,
where

πS =
⌈S1/3⌉
S

δ[ξ0] +
S′

S
πS′ =

⌈S1/3⌉
S

δ[ξ0] +

S′∑
j=1

S′

S
w(j)δ[ξ(j)].

Let h be any measurable function on unlabelled plans. We know, from Proposition 3.1 applied
to πS′ , that as S→∞ (which also implies S′ →∞),

√
S′ (EπS′ [h ([ξ])]−Eπ [h ([ξ])])

d−→N (0, VSMC(h))

We define a random variables Y ′
S :=

√
S′ (EπS′ [h ([ξ])]−Eπ [h ([ξ])]), and letZ ∼N (0, VSMC).

We know for any a,

lim
S→∞

Pr(Y ′
S ≤ a) = Pr(Z ≤ a).

Because Z is a continuous random variable and thus Pr(Z = a) = 0, it’s also true that for
any sequence bS with limS→∞ bS = a,

lim
S→∞

Pr(Y ′
S ≤ bS) = Pr(Z ≤ a).

Let YS :=
√
S (EπS

[h ([ξ])]−Eπ [h ([ξ])]), and note that we are trying to show the se-
quence YS converges in distribution to N (0, VSMC). We see that

EπS
[h ([ξ])] =

⌈S1/3⌉
S

h([ξ0]) +
S′

S
EπS′ [h ([ξ])] .

Using that we can rewrite Eπ [h ([ξ])] =
⌈S1/3⌉

S Eπ [h ([ξ])] +
S′

S Eπ [h ([ξ])], it follows that

YS =
√
S

(
⌈S1/3⌉
S

h([ξ0]) +
S′

S
EπS′ [h ([ξ])]−Eπ [h ([ξ])]

)
=

⌈S1/3⌉√
S

h([ξ0])−
⌈S1/3⌉√

S
Eπ [h ([ξ])] +

S′
√
S
(EπS′ [h ([ξ])]−Eπ [h ([ξ])])

=
⌈S1/3⌉√

S
(h([ξ0])−Eπ [h ([ξ])]) +

√
S′

S
·
√
S′ (EπS′ [h ([ξ])]−Eπ [h ([ξ])])

=
⌈S1/3⌉√

S
(h([ξ0])−Eπ [h ([ξ])]) +

√
S′

S
Y ′
S

If we consider Pr(YS ≤ a) for any a, we see that

Pr (YS ≤ a)) = Pr

(
⌈S1/3⌉√

S
(h([ξ0])−Eπ [h ([ξ])]) +

√
S′

S
Y ′
S′ ≤ a

)

=Pr

(
Y ′
S ≤

√
S

S′

(
a+

⌈S1/3⌉√
S

(Eπ [h ([ξ])]− h([ξ0]))

))
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Note for bS :=
√
S√
S′

(
a+ ⌈S1/3⌉√

S
(Eπ [h ([ξ])]− h([ξ0]))

)
, we see that limS→∞ bS = a, as√

S/S′ goes to one and ⌈S1/3⌉√
S′ goes to 0. We conclude that for all a,

lim
S→∞

Pr(YS ≤ a) = lim
S→∞

Pr(Y ′
S ≤ bS) = Pr(Z ≤ a),

and so YS converges in distribution to N (0, Vα), as claimed. Note this result would hold with
S1/3 replaced by Sα for any α< 1/2.
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