
Selected Solutions for HW Math 158, Complex Analysis

1.3.24 What are the images under vertical and horizontal lines of z 7→ cos z?
Well,

cos z =
eiz + e−iz

2
=
eix−y + e−ix+y

2
=
e−y(cosx+ i sinx) + ey(cos(−x) + i sin(−x))

2
.

Since cos is an even function and sin is an odd function, this becomes

e−y(cosx+ i sinx) + ey(cosx− i sinx)

2
= cosx

(
ey + e−y

2

)
− i ·sinx

(
ey − e−y

2

)
.

So we’ve shown that cos z = (cosx cosh y) − i(sinx sinh y), or in other words if
f = u+ iv as usual then we have u = cosx cosh y and v = − sinx sinh y.

To see where horizontal lines go, we consider fixing y = c while x varies. This
gives u = a cosx, v = b sinx, which traces out an ellipse: (u/a)2 + (v/b)2 = 1. (It’s
a circle that’s been stretched by a horizontally and by b vertically.)

To see where vertical lines go, we consider fixing x = c while y varies. This
gives u = a cosh y, v = b sinh y. Now the most basic hyperbolic trig identity is
cosh2 y − sinh2 y = 1, which is easy to discover by calculation or by Wikipedia.
Thus we have (v/b)2 − (u/a)2 = 1, which is the equation of a hyperbola.

1.3.26 (a) Show that under the map z 7→ z2, lines parallel to the real axis are
mapped to parabolas.

Here, we have easy formulas: since (x + iy)2 = (x2 − y2) + (2xy)i, we have
u = x2 − y2, v = 2xy. Lines parallel to the real axis are given by fixing y = c and
letting x vary. Thus we get u = x2 − c2, v = 2xc, and the relationship between
these is u = (v/2c)2 − c2. That means u gives a parabola in v, shifted by c2.

u

v

(b) Show that under (a branch of) z 7→
√
z, lines parallel to the real axis are

mapped to hyperbolas.
The square root map is just the squaring map performed backwards, so let’s

stick with our expressions from the previous part, taking u, v back to x, y. Now
lines parallel to the real axis have v = c as u varies. From v = 2xy, we get 2xy = c,
or in other words y = ( c2 ) 1

x . These are hyperbolas (sketch the usual graph y = 1/x
to see this) with the x and y axes as their asymptotes.



Topology worksheet #1 Show that {z ∈ C : |Re z − a| < ε1} ∩ {z ∈ C :
| Im z − b| < ε2} is an open rectangle in the complex plane. Using this, show that
for every disk in the plane, there are real numbers a, b, ε1, ε2 such that the rectangle
they describe lies inside the given disk.

Let the intersection of those sets be called R. It is the locus of points whose
x values are between two values and whose y values are between two values; the
intersection of those two strips is a rectangle.

I need to show R is open. I will show that for any point in R, it has an open
disk neighborhood totally within R. Take any p = x+ yi ∈ R. By the definition of
R, this means that a− ε1 < x < a+ ε1 and b− ε2 < y < b+ ε2.

Let δ = min {(a+ ε1)− x, x− (a− ε1), (b+ ε2)− y, y − (b− ε2)}, which is the
smallest vertical/horizontal distance from p to any of the sides of the rectangle.
Then the disk D(p; δ/2) is totally contained in R.

Now let D(q; r) be an arbitrary disk in the plane. For the rectangle R described

in this problem, the farthest point from the center is
√
ε21 + ε22, so we need the

rectangle to be centered at q and we need
√
ε21 + ε22 < r. So it will certainly work

if we take a = Re(q), b = Im(q), and ε1 = ε2 = r/2.

1.5.14 (e) Show that the expression
∑N
n=0

∑M
m=0 anmz

nz̄m is an analytic func-
tion of z if and only if anm = 0 whenever m 6= 0.

In earlier parts of this problem, you showed that ∂/∂z and ∂/∂z̄ are linear
operators satisfying the product rule; the first gives 1 and 0 when applied to z and
z̄, respectively, while the second does the opposite. You also showed that a function
f is analytic if and only if ∂f/∂z̄ = 0.

The problem is asking us to show that the expression can only be analytic if
there are no (nonzero) terms with m > 0. So to finish this problem, we only need
to show that if m > 0, then the expression is not analytic; that is, it is not killed
by ∂/∂z̄.

Now of course zn is analytic, so ∂/∂z̄(zn) = 0. On the other hand, ∂/∂z̄(z̄m) =
mz̄m−1, as you can check with a computation or just deduce because ∂/∂z̄ works
on z̄ just the way the usual derivative works on z.

∂

∂z̄

(
N∑
n=0

M∑
m=0

anmz
nz̄m

)
=

N∑
n=0

M∑
m=0

anm
∂

∂z̄
(znz̄m)

So let’s just consider the individual ∂
∂z̄ (znz̄m) terms:

∂

∂z̄
(znz̄m) = zn

∂

∂z̄
(z̄m) + z̄m

∂

∂z̄
(zn) = mznz̄m−1,

which is a nonzero function as long as m > 0. And no other term in the original
sum has the same combination of z and z̄ terms to cancel it out.

So we’ve shown what we wanted: if m > 0, then the ∂/∂z̄ operator does not
send our expression to the zero function, so it’s not analytic.

1.5.18 Let f(z) = z5/|z|4 if z 6= 0 and 0 if z = 0.
(a) Show that f(z)/z does not have a limit as z → 0.
Note that if z = reiθ, then |z| = r, so f(z) = re5iθ. Thus f(z)/z = e4iθ, which is

the point on the unit circle with argument 4θ. Thus f(z)/z takes different values
as we approach from different angles, so it has no overall limit.



(b) If u = Re(f) and v = Im(f), show that u(x, 0) = x, v(0, y) = y, u(0, y) =
v(x, 0) = 0.

From our formula above, we see that u = r cos(5θ) and v = r sin(5θ). Now (x, 0)
is a point on the x axis, so it has θ = kπ, for some whole number k, and since 5θ =
5kπ = kπ + 4kπ, we see that 5kπ and kπ have the same argument. Likewise (0, y)
has argument θ = π/2 + kπ, and we have 5θ = 5π/2 + 5kπ = π/2 + kπ+ 2π+ 4kπ,
which differs by a multiple of 2π again. That means u = r cos(5θ) = r cos(θ) = x
and v = r sin(5θ) = r sin(θ) = y for all points on either of the two axes. Thus
u(x, 0) = x, u(0, y) = 0, v(x, 0) = 0, and v(0, y) = y.

(c) Conclude that the partials of u, v exist and that the Cauchy-Riemann equa-
tions hold but that f ′(0) does not exist. Does this conclusion contradict the Cauchy-
Riemann theorem?

Why do the partials ux, uy, vx, vy exist? Because u = x and v = y along the
x-axis, and the same thing is true along the y-axis, so the directional derivatives
are the same as they would have been for the identity function:[

ux uy
vx vy

]
=

[
1 0
0 1

]
.

Why do the CR equations hold? Because that matrix is in the right form,
[
a −b
b a

]
.

Why doesn’t f ′(0) exist? Well, consider the definition of derivative!

f ′(0) = lim
h→0

f(h)− f(0)

h
.

But considering that f(0) was defined to be zero, this can be rewritten as f ′(0) =

lim
z→0

f(z)
z . But that’s the limit that we showed in part (a) does not exist!

Now, of course this doesn’t contradict the CR theorem, because after all it’s a
theorem. The loophole is that for the matrix of partial derivatives to be a Jacobian
at all (in other words, for the function to be differentiable even in the sense of real
variables), the partials have to be continuous, and here we never verified that. This
whole problem is actually designed to show you why that extra little hypothesis is
necessary.

1.5.20 Let f be an analytic function on an open connected set A and suppose
that f (n+1)(z) (the (n + 1)st derivative) exists and is zero on A. Show that f is a
polynomial of degree ≤ n.

OK, first let’s establish this for n = 0. That is: if the first derivative of a function
is zero on A, then the function is polynomial of degree zero. This was shown in
class: if f ′(z) ≡ 0 on a domain A, then f(z) ≡ c on A.

From this we can establish a Claim: any two functions with the same derivative
on a domain A must differ only by a constant on A.

Proof: Suppose g and h satisfy g′(z) = h′(z) on A. Then let f = g − h. We
have f ′(z) = g′(z)−h′(z) = 0 on A, so by the previously cited fact, f(z) ≡ c on A.
Thus we’ve shown g(z) = h(z) + c on A, as desired. �

So now let’s try this for n = 1. We suppose that f ′′(z) = 0. This is the derivative
of f ′, so by the fact from class, we have f ′(z) = c. So what is f itself? Well, I
know one function whose derivative is c, namely the function F (z) = cz. So my
function f must only differ from it by a constant, giving f(z) = cz + d, which is a
polynomial of degree at most one.



I can continue to increment n one step at a time (or construct a proof by induction
if you know what that is). Here’s the end using proof by induction: Suppose the
claim is established for all n < N and let’s prove it for n = N . Now f (N+1)(z) ≡ 0,
which is the Nth derivative of f ′, so f ′ is a polynomial of degree at most N − 1.
This has one antiderivative that we know, which is a polynomial of degree N . So f
can only differ from that by a constant, making it also a polynomial of degree N .

Alternate Argument: f (N+1) is the first derivative of f (N), so if that is zero it
follows that f (N) is constant, say c. Now I know a function, namely H(z) = c

N !z
N (a

polynomial of degree N), whose Nth derivative is c. So I have f (N)(z)−H(N)(z) =
0, so the Nth derivative of f − H is zero, so by inductive hypothesis, f − H is
a polynomial of degree at most N − 1. That means f is the sum of H and that
polynomial, so f is a polynomial of degree at most N .

2.2.8 Let γ1 be the circle of radius 1 and let γ2 be the circle of radius 2 (traversed
counterclockwise and centered at the origin). Show that∫

γ1

dz

z3(z2 + 10)
=

∫
γ2

dz

z3(z2 + 10)

This problem will be done if we can apply the Deformation Theorem to transform
one curve to the other by a homotopy. In order to do that, we need to check that
the region between the two curves (which is the region slid over by the homotopy)
is a domain of analyticity for the function f that we are integrating. Since the
integrand f is a rational function, it is analytic everywhere that it is defined. So
only the zeroes of the denominator are singularities for the function. These occur
at z = 0 and at the square roots of −10, which are ±

√
10 · i. Since

√
10 > 2, none

of these singularities falls in the ring between γ1 and γ2.

2.2.10 Evaluate
∫
γ

√
z2 − 1 dz, where γ is a circle of radius 1

2 centered at 0.

In Worked Example 1.6.8 (page 88) it is explained how to work with a nonstan-
dard branch of the square root function, slit along the positive real axis instead
of the usual negative real axis, such that the domain of analyticity for

√
z2 − 1 be-

comes C\
(

(∞,−1]∪[1,∞)
)

. That domain is simply connected. For this branch, the

whole contour γ is inside this simply connected domain, so by Cauchy’s Theorem,
the integral must be zero.

HOWEVER, when you change the branch of the function you’re integrating,
you may have changed the answer! So if the problem is assuming working with the
standard branch for the square root function, this is not good enough.

There is a way to integrate right through branch cuts using limits: suppose you
want to compute

∫
γ
f for a curve parametrized over [a, b] but γ(c) is on a branch

cut. Then you can just let γ1 be the part of γ defined on [a, c− ε] and let γ2 be the
part of γ defined on [c+ ε, b], so that if all the limits exist, then∫
γ

f = lim
ε→0

[∫
γ1

f +

∫
γ2

f

]
= lim
ε→0

[∫ c−ε

a

f(γ(t)) · γ′(t)dt+

∫ b

c+ε

f(γ(t)) · γ′(t)dt

]
.

So in theory, that’s another way to do this problem without changing to a nonstan-
dard branch... but in practice, I tried it and it works out to be horrible!


