LINEAR ALGEBRA WORKSHEET

Let’s “recall” some basics about matrices and linear transformations.

A matrix is a rectangular array of numbers. Actually those “numbers” can come
from any field you want, like R, C, Q, or more exotic ones like Z/pZ or Q, (if you
know what those are).

Matrices multiply by a “mating” rule: to get the entry of AB in the ith row
and jth column, you take the dot product of the ith row vector of A with the jth
column vector of B. That is, mate the rows of A with the columns of B to get the
entries of AB. Example:

5 w1 2 |5 1047
Soah -1

The determinant is defined for square matrices, and is particularly easy to define
for 2 x 2 matrices, which are basically all we care about for complex analysis pur-
poses. We define det [‘g Z] = ad — be. Fact: determinant is multiplicative, meaning
that det(AB) = det(A) det(B). (Easy to check for 2 x 2s.)

Note that I = [} {] is a special matrix called “the identity” that has the property
that Al = TA = A for any 2 x 2 matrix A. We can see that det [ = 1.

The inverse of a matrix A is a matrix A~! that cancels out A, meaning that
A-A7' = A71. A = I. Because det I = 1, it follows that det(A~!) = ﬁ(z“)'

Multiplying vectors by a 2 x 2 matrix can be regarded geometrically as a linear
transformation of R?. For instance, let’s look at A = [} }1]. We have [} 1][}] =
[*5¥], so that gives us a rule to send input vectors to output vectors.
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The result is a shear of the plane. Notice that it sent the unit square (area 1) to a
parallelogram that, you can check, also has area 1. In general, this is the geometric
interpretation of determinants: they tell you by what factor the areas or volumes
of regions are changed when you multiply by the matrix.

What makes such maps “linear” is that they take lines to lines. In fact, since
these maps also always preserve the origin, they take lines through the origin to
lines through the origin.

Abstractly speaking, we’ll call a function between vector spaces a linear trans-
formation if T(av 4+ bw) = a-T(v) + b-T(w), where v, w are vectors and a,b are
scalars. (Why does this take lines to lines? Because a line is of the form {v +tw}.
This condition is precisely what is needed to make the output be in the same form!)

Here’s a useful observation: you can read off the effects of a matrix on the basis
vectors [}] and [9] by just taking its columns. This is easily verified.
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It’s a fact from basic linear algebra that all matriz multiplications are linear

transformations, and all linear transformations can be written in the form of matriz
multiplication.



Exercises.

(1) Compute [33]-[Z19]. Find the determinant of each matrix, and the
determinant of the product.

(2) Check the following fact: if ad — bc # 0, then the inverse of A = [24] is

A7l = 2[4 P]; if ad — be = 0, then the matrix has no inverse.

cosf) —sinf
(3) Show that [sinG cos 0

whose effect is CCW rotation by a right angle. For that M, what is M?2?

} does CCW rotation by 0. Find the matrix M

(4) For a given r > 0, what is the matrix that scales all vectors by a factor of
r?

(5) Show that a matrix has the effect of stretching and rotating all vectors by
the same amount if and only if it is of the form [‘; _ab] for some numbers
a,b. For such a matrix, how much does it stretch by? How much does it

rotate by?



MUTLIVARIABLE CALCULUS WORKSHEET

Since the complex plane C can be identified with the real plane R2, it will be
useful to recall some facts about functions R — R? and R? — R2 that you learned
in calculus.

Parametrized curves. You can parametrize a curve in the plane by writing

() = ng] or () = u(t) +i-v(t).
For instance, y(t) = e is the curve traced out by cos(t) + i-sin(t) as t varies
over real numbers. This is the unit circle!

As you remember from calculus, you can get the tangent vector to a parametrized
curve by taking +/(t), and its component functions are just the derivatives of the
real functions w and v. Written in complex notation, this is just saying that +/(t) =
u'(t) +i-v'(t). You'll recall that this is also known as the velocity vector, and its
magnitude is the speed at each point. So we can compute that for the unit circle
example, y(t) = e, the derivative is —sin(t) + i-cos(t) = i(cos(t) + i-sin(t)) = ie.
This has norm 1, which tells us that this parametrization travels around the unit
circle at unit speed.

Jacobians. The curves above can be thought of as functions v : R — C. Now
let’s think about functions f : C — C, which can be reinterpreted as functions
f :R? = R2, with which we are already familiar from calculus.
If we write x, y for the input variables and u, v for the output variables, as usual,
_ |ulz,y)
then we have f(z,y) = [v(x,y)
We can form a useful matrix called the Jacobian of the transformation by just
recording all four partial derivatives:

} , or of course f(z +iy) = u(z,y) + i-v(z,y).

Jy=Df = [“ “}
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where u, stands for %v and likewise for the other partials.

Notice that this is a matrix of functions: for instance, if f(z,y) = [ ay? }, then

sinx
Df = [Cg; ng} is the Jacobian, and D f(r,2) = [ 4 7] is the Jacobian evaluated
at the point (m,2).

Or to do an example in complex notation, the exponential map f(z) = e*

can be written out as f(z + yi) = e*cosy + i(e“siny), so its Jacobian is Df =
e®cosy —e*siny
[ez siny e”cosy } '

What are Jacobians good for? Lots of things: (1) they explain how tangent
vectors are affected by the transformation at each particular point; (2) the deter-
minant tells you how much area/volume is transformed by at each particular point;
(3) they allow a very neat rule for change of variables in integration; (4) they give
the best possible approximation to f by a linear transformation.

The last fact can be written this way: f has derivative Df if and only if an
excellent approximation to f(zo 4+ Az) is given by f(z0) 4+ [Df(20)]-Az. (Here Az
is supposed to be a small vector, otherwise known as a complex number of small



norm.) How excellent? We demand that as Az shrinks, the difference between
these terms shrinks even faster:

f(z0+Az) — f(20) — [Df(zo)} Az
lim

Az—0 |AZ|

=0.

Stare at this for a second and do the cancellation. This is just the usual definition
of derivative, repackaged!

Exercises.

(1) What curve is parametrized by v(t) = t* + (3t> + 1)i? Plot this curve and
label the points ~(¢) when ¢t = 0,1,—1,2,3. What is the tangent vector
~'(t) at each of those points?

(2) The polar coordinates transformation is (r,6) +— (rcos@,rsinf). What
is its Jacobian and what is the Jacobian determinant? (Notice that since
r and 6 are the input variables, your partial derivatives should be with
respect to r and 6, not z and y.)

(3) One of the examples above was f(z,y) = L”fr-’;’i}, where we found that
Df(m2) = [,41 457}. One example of a parametrized curve through the
point P = (m,2) is the curve v(t) = (7+t)+(2+t)i, which has y(0) = P and
~'(0) = 1 4 4. Define a new curve by a(t) = f(v(¢)). Find «(0) and o/(0).
The Jacobian is supposed to be telling us what f does to tangent vectors,
so check that [Df(P)]-[7/(0)] = [a/(0)], when everything is interpreted as
matrices and vectors. Choose a second point @) and a curve through @ and
carry out the same calculations.



TOPOLOGY WORKSHEET

This is based on the definitions of limits, continuity, open, closed, compact, and
connected that are given in the book in §1.4.

Important Note: if you are working in the plane with its standard topology,
as we usually are in this class, then you can use easier definitions than the general
ones. Open means that every point in the set has an open disk centered there that
stays in the set. Closed means that the complement is open, and it also means that
if the set contains a sequence that converges, it contains the limit too. Compact
means closed and bounded. And connected means that between every two points
in the set there is a path that stays in the set.

Exercises.

(1)

Show that {z € C: |Rez—a| < e}N{z e C: |Imz—b| < e} is an
open rectangle in the complex plane. Using this, show that for every disk
in the plane, there are real numbers a, b, €1, €2 such that the rectangle they
describe lies inside the given disk.

We defined arg as a multivalued function C — C. We defined the principal
argument Arg as choosing the value of the argument in the standard interval
(—m, 7], so that it becomes single-valued. Show that Arg is not continuous
on C but it is continuous on the slit plane C\ (—o0,0].

(Hint: at what points of C is Arg NOT continuous?)

Give a geometric proof that the composition of two continuous functions is
continuous. Turn this into an e-¢ proof.

Show that {1,1/2,1/3,1/4,...,1/n ...} is not compact by constructing an open
cover that has no finite subcover. Is it closed? Is it bounded?

The general definition of a connected set is as follows: we say that € is
disconnected if it has a nonempty proper subset A C €2 such that A = QNB
for some open set B and A = QN C for some closed set C. (The nickname
for such a set A is “clopen” because it is both closed and open relative to
0.) If a set is not disconnected, then it’s connected.

For © C C, suppose there is some line L C C such that € contains some
points on either side of L but no point on L. Prove {2 is not connected.



