
Real Analysis
a short presentation on what 

and why



Fourier analysis is about taking functions and realizing them or approximating 
them in terms of periodic (trig) functions.  Many, many practical applications.

Def:  R = { Riemann-integrable functions [-ᶢ,ᶢ]⟶ ℝ }

᭧ 2(ℤ) ={ infinituples s.t.                      }; we have a nice map R⟶᭧ 2(ℤ) via

I. Fourier Analysis



Fourier, continued
It’s nice because of Parseval’s identity, which guarantees that

i.e., the correspondence is norm-preserving.  BUT the map R⟶᭧ 2(ℤ) is not 
surjective, and only the target is complete (contains limits of Cauchy seqs).

That means there are tuples in ᭧ 2(ℤ) that don’t correspond to Riemann-
integrable functions.  

What ARE the functions with these coefficients?  How do we integrate them?  



II. Limits
Recall that C[0,1] denotes continuous functions [0,1]⟶ℝ.  Given a sequence of 
such functions, suppose the limit exists pointwise:

What can we say about f ?  Recall def. of uniform convergence: 

If fn ⟶f uniformly, then f is continuous.  Otherwise, it’s not necessarily even 
Riemann-integrable.  Can we find a way to integrate that is “nice,” i.e.,     

?



III. Length
For a curve ᶕ(t)=( x(t), y(t) ), it’s called rectifiable if the two definitions of length 
agree:

where the sup is over subdivisions 

When (for what conditions on the coordinate functions x, y) does the sup 
converge?  Does that force the integral to exist?  What are the geometric 
properties of rectifiable curves, and what are non-rectifiable curves like?



Remember the FTC?  It’s got two forms, 

and 

For which F does the FTC hold?  

What’s the full generality of differentiating the integral?

IV. Fundamental Theorem of Calculus



All of these mysteries cluster around questions of measure and singularity.  
Measures are “things we can integrate against” (like our enigmatic dx) and 
they tell us “how much” in maximal generality.  

Def:  For a set X, we want a collection Σ ⊆ P(X) of “measurables” and 

ᶞ : Σ ⟶ [0,∞]   s.t.   ᶞ(∅)=0 and ᶞ is countably additive:

It would be particularly lovely to have one on ℝd that is translation-invariant 
and “nice” on intervals:  

V. Measure



Measures, intuition, and paradoxes
Lebesgue measure is the gadget we seek on ℝd , but it has some crazy-seeming 
properties and it does not “play well” with certain intuitively benign principles 
like the Axiom of Choice.

First the good news:  besides satisfying our requirements, Lebesgue measure 
gives an integral that is quite strong and flexible.  It can deal with “horrible” 

functions like the classic ᶩ
ℝ-ℚ . The integral of ᶩ

ℝ-ℚ over [0,1] is 1, because 
Lebesgue measure “knows” that there are way more irrationals than rationals.  

As a function m: ℝd⟶ [0,∞], it should be thought of as giving length (d=1), area 
(d=2), or volume (d≥3).



That was the good news; on the other hand, if you accept AC, then there 
are non-measurable sets in ℝ, such as Vitali sets.  

AC:  For every collection of sets, it is possible to choose one 
representative from each. 

Def: a Vitali set is a set of representatives for the equivalence relation 

Philosophical note:  should you accept AC?  It’s kind of up to you, since it 
was proved independent of ZF, the usual axioms of set theory.  Most 
people accept it and work in ZFC.  You can always be a holdout and work 
in ZFS, which is ZF plus the axiom that all sets are Lebesgue-measurable!



Paradoxes and riddles
Banach-Tarski Paradox (1924):  It is possible to take a solid unit ball in ℝ3, 
divide it into five pieces, then rotate the pieces to reassemble two solid unit 
balls.

This doubles volume, of course, and rotations are rigid motions, which should 
preserve geometric quantities like volume, so that seems bad.

Answer:  B-T is possible if you accept AC, in which case it relies on a 
decomposition into non-measurable pieces.



Paradoxes and riddles
Hadwiger-Nelson Problem (1950-??):  How many colors does it take so that 
every point of the Euclidean plane can be assigned a color, and no two points 
at distance one have the same color?

Answer:  it’s only known that at least 4 colors are needed and that 7 suffice.  
HOWEVER, if it’s possible with 4 or 5, the color-sets must be non-measurable.



Paradoxes and riddles
Ruziewicz Problem (~1920):  what are the rotation-invariant measures on the 
sphere Sd that are defined on all Lebesgue-measurable sets?  What if we relax 
countable additivity and only require the measure to be finitely additive?

Answer:  Lebesgue is it for d≥2.  For d≥4, this was proved by Margulis and 
Sullivan (independently) circa 1980.  For d=2,3, Drinfeld did it in 1984.  The 
methods include Lie groups, representation theory, number theory…. 

These three guys have three Fields medals.   



Tiny glimpse into the history
In Newton/Leibniz calculus (17th c.), the basic objects are series, not functions.  
Thinking about it functionally, this amounts to a standing assumption that all 
functions are analytic (represented by a convergent power series).  Most of the 
manipulations were done without worrying about convergence.  

Abel 1826:  “Analysts have been mostly occupied with functions that can be expressed as power 
series.  As soon as other functions enter---which certainly is rarely the case---one does not get on any 
more.... an infinite multitude of mistakes will follow.”

The history from the 1660s to the 1970s is a fitful exploration of the generality 
and foundations of calculus.  



Quick & Dirty Timeline
1660s-70s: Newton and Leibniz introduce a calculus of series with rudimentary derivatives and 

integrals, relying on murky reasoning about infinitesimals
18th c.: Euler introduces functions, reworks “analysis infinitorum”
1790s-1800s: Fourier series and Parseval’s identity
1816: Bolzano defines limits, continuity, uniform continuity (not really known till 1870s)
1820s-40s: Cauchy publishes prolifically on “rigorous” real analysis; admits there are “exceptions”

(e.g., nobody understands L’Hôpital’s rule)
1850s: Riemann gives first limit definition of integrals
1850s-80s: Weierstrass develops uniform convergence; 1872 finds cont, nowhere diff functions
1870s: several constructions of the real numbers (Dedekind cuts, Cauchy sequences, ...)
1880s-90s: Arzelà-Ascoli: equicontinuity
1880s-90s: Cantor tries to understand how bad singularities can be, blows up mathematics
1898-99: infusion of topology: Borel sets, Borel measure
1899: Baire Category Theorem:  powerful tool in point-set topology
1901-02: Lebesgue measure, Lebesgue integral; 1905 Zermelo blows things up again with AC

Borel: “such reasoning does not belong in mathematics”; Baire, Borel, Lebesgue jump ship
1910s-50s: Egorov, Luzin, and the Moscow School (“Luzitania”) carry the torch
1910s: Hausdorff measure, Hausdorff dimension, gateway to fractals
1970s: Robinson finally gives a rigorous mathematics of infinitesimals (“non-standard analysis”)



Pathology and perversion
Liouville 1842, on Cauchy’s work:  “It is perhaps good to add in general that 
rules of the kind we have just discussed and that deal with singular and 
exceptional values almost always have cases of failure that result from their 
very nature. One must use them with reserve and must assure oneself, in 
each of the examples in which one uses them, that the use is legitimate.”

Hermite 1893, to Stieltjes:  “I turn aside with a shudder of horror from this 
lamentable plague of functions which have no derivatives.”



Pathology and perversion
Poincaré 1908: “Logic sometimes makes monsters.  Since half a century we 
have seen arise a crowd of bizarre functions which seem to try to resemble 
as little as possible the honest functions that serve some purpose.  No longer 
continuity, or perhaps continuity, but no derivatives, etc.  Nay more, from the 
logical point of view, it is these strange functions which are the most general, 
those one meets without seeking no longer appear except as a particular case.  
There remains for them only a small corner.  Heretofore when a new function 
was invented, it was for some practical end; to-day they are invented 
expressly to put at fault the reasonings of our fathers, and one never will get 
from them anything more than that.”



So, real analysis: what and why?
This course will develop real analysis as a solid conceptual framework for 
calculus, introducing definitions and constructions that have been refined 
over 300 years to handle most of that period’s “paradoxes” and “pathologies.”  

We’ll present theories of measure, integration, and function spaces to build 
up the most modern, rigorous, and general setting we have for functions of a 
real variable.

The techniques will bring together algebra, geometry, set theory, and topology 
with an emphasis on estimates, continuity, and uniformity and a strict 
axiomatic method that add up to classical analysis.


