
Hyperbolic Groups Minicourse Duchin, Luminy, Jan 2014

1. Hyperbolic plane

1.1. Intro to H. As a set, H :“ tz P C : Impzq ą 0u Ă Ĉ :“ CY t8u, with boundary R̂ :“ RY t8u.
Recall that Möbius transformations are maps f : ĈÑ Ĉ of the form fpzq “ az`b

cz`d for a, b, c, d P C
and ad ´ bc ‰ 0. They are extended to 8 by continuity (so fp8q “ a{c). This is an action of
GL2pCq by conformal maps. One checks that the subgroup SL2pRq preserves H by checking that
Impzq ą 0 ùñ Impaz`bcz`d q ą 0. Indeed, ˘A act the same, so one might prefer to regard the action as

by PSL2pRq :“ SL2pRq{t˘Iu. We will say that PSL2pRq acts by fractional linear transformations
(FLTs).

Note that every FLT is a composition of affine maps and circle inversion. In particular, for the general
f above, we can take gpzq “ c2z ` cd, Jpzq “ ´1{z, hpzq “ pad´ bcqz ` a

c , and we get f “ h ˝ J ˝ g.

The hyperbolic metric is often introduced by its distance element ds “ dz
y “

?
dx2`dy2

y (then take

the length metric: distance is infimal length of a path between points).
Sample calculation: We know that the imaginary axis is a geodesic from any pi to qi with parametriza-

tion γptq “ eti:
ş

γ
ds “

ş

γ
|dz|
y “

şq

p
|dy|
y “ lnp|q{p|q, and for any path we have the inequality |dz| ě |dy|,

so this is shortest-possible.
One can check that length is invariant under FLTs: `pγq “ `pT ˝ γq for all T P PSL2pRq, and do a

bit more work to see that indeed Isom`pHq “ PSL2pRq.

1.2. Cross-ratio setup. HOWEVER! That was kind of the wrong viewpoint. Instead, we should take
the FLT action as essential and build a metric compatible with it. As Möbius transformations, FLTs
are not only conformal (preserving circle fields in the tangent space) but actually preserve circles in Ĉ
(which look like lines and circles in C). Suddenly it is easy to see why FLTs preserve H: since FLTs have

real coefficients, R̂ is preserved, so we only need to check check one more point. And being conformal,
the action preserves angles. Thus the images of the imaginary axis under FLTs are all orthocircles,
defined as circles perpendicular to the real axis (some of which look like vertical lines).

FLTs have a complete invariant for their action on R̂ called the cross-ratio:

rp, q, r, ss :“
pr ´ pqps´ qq

pq ´ pqps´ rq
.

Cross-ratio extends from pR̂q4z∆ to pĈq4z∆, where ∆ is the fat-diagonal subset with any three points
agreeing. To check that cross-ratio is invariant under FLTs, it suffices to check invariance under affine
maps and under inversion, both easy.

Then a quite natural definition is to take dpP,Qq “ ln
ˇ

ˇ

ˇ
rP̄ , P,Q, Q̄s

ˇ

ˇ

ˇ
, where P̄ , Q̄ are the endpoints on

R̂ of the unique orthocircle through P,Q. Note that for P,Q on the imaginary axis, we recover the same
distance as for the previous definition. (Why a metric? Symmetry is immediate. Positive definiteness
follows from positivity on the imaginary axis and invariance under FLTs. It’s more work to check the
triangle inequality, but not too bad.) It’s easy to see that the imaginary axis is geodesic and indeed
that it’s the unique geodesic between any two of its points. Thus our newly redefined hyperbolic metric
is uniquely geodesic with orthocircles as its geodesics. And incidentally now it is immediate that FLTs
are precisely the isometries.

1.3. Hilbert geometries. There’s a completely different construction using cross-ratios on R̂ directly.
Hilbert geometry on a convex body: dpp, qq “ lnrp̄, p, q, q̄s, where now the line through the points is given
a Euclidean numbering with an arbitrary 0 and 1. Now the SL2pRq action by LINEAR transformations
sends pΩ, dΩq to an isometric pΩ1, dΩ1q. Note that for the same reasons as before, straight lines are
geodesic. However now there are sometimes alternate geodesics.

Beautiful facts: p©, d©q is isometric to H, called the Klein model. (Careful! Don’t confuse with

the Poincaré disk model, which is the image of H under a Möbius transformation sending R̂ to the unit
circle.) On the other hand, if Ω is a triangle, the space p4, d4q is isometric to a Banach space structure
on R2. Furthermore (up to affine maps), © is the only Riemannian metric among Hilbert geometries
and 4 is the only Banach space! We’ll come back to these examples.
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1.4. Classification of isometries. Trace classifies PSL2pRq elements into three types: hyperbolic
(|tr| ą 2), parabolic (|tr| “ 2), and elliptic (|tr| ă 2). By basic linear algebra, these are conjugate into
the subgroups

A “ t
`

k 0
0 1{k

˘

u; N “ t
`

1 n
0 1

˘

u; K “ t
`

cos θ sin θ
´ sin θ cos θ

˘

u,

respectively, and indeed the Iwasawa decomposition PSL2pRq “ KAN is the statement that any
element of PSL2pRq can be expressed (in fact, uniquely) as a product of matrices from these three
subgroups.

Note that each of these is a 1–parameter subgroup, so you can consider the orbits of points in H̄ as
the parameter is varied. This is how those orbits look in the Poincaré (conformal) disk model:

88

0

i

8

0

Figure 1. Actions on the unit disk by elements of K, A, and N respectively.

Thus this three-way classification corresponds to the fixed-point structure: hyperbolic isometries have
two fixed points on the boundary; parabolics have one fixed point on the boundary; and elliptics have
one fixed point on the interior of H.

1.5. SL2pZq and Farey graph. Fuchsian groups are discrete subgroups of PSL2pRq and the most
basic example is PSL2pZq, sometimes called the modular group. If T “

`

1 1
0 1

˘

is translation and

J “
`

0 1
´1 0

˘

is inversion in the unit circle, then PSL2pZq “ xT, Jy. You will prove this later in the
exercises.

The Farey graph is the PSL2pZq images of the imaginary axis, and so contains all of Q̂ as its points
at infinity. It is not hard to see that p{q and r{s are connected by an edge iff det

`

p q
r s

˘

“ ˘1, so it is in
some sense a geometric recording of the matrix group. Note that for two such fractions, their mediant
p`r
q`s is adjacent to each.

Finally, let’s build a fundamental domain for PSL2pZq acting on H: we want a compact tile whose
Γ-images cover the plane and for which two tiles can overlap only along their boundary. We can use a
Dirichlet domain

DppΓq :“ tz P H : dpz, pq ď dpz, γppqq @γ P Γu.

This is the polygon obtained by intersecting all half-spaces of points closer to p than each γppq. (Note:
this construction provides a fundamental domain whenever Γ acts discontinuously and p has a trivial

stabilizer.) One sees that D2ipΓq is the triangle with vertices at ˘ 1
2 `

?
3

2 i and 8. This fundamental
domain F comes up all the time, and its quotient F{Γ is called the modular surface.

F
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2. Trees, thin triangles, insize, and metric treeishness

2.1. Trees. (Simplicial) trees are graphs with no cycles, endowed by default with the length metric
that gives edges length one. R–trees are generalizations obtained by rescaling: a metric space is an
R–tree if for any two points there exists an isometrically embedded r0, dpp, qqs connecting them, and this
is the only non-backtracking path between the points. The most general triangle in a tree is a tripod,
so there is always (at least) one vertex common to all three sides of a triangle. Furthermore, each side
of the triangle is completely contained in the union of the other two. Also, two rays from a common
basepoint agree up to a certain point, then diverge completely in the sense that the concatenation of the
two rays after the split is a bi-infinite geodesic. Notice that this is an extreme, cartoon version of the
behavior of geodesics on a saddle surface (negative curvature).

2.2. Thin triangles. The most commonly seen definition of δ–hyperbolicity is that triangles are thin.
That is, if you have a geodesic triangle (three points, pairwise connected by geodesic segments α, β, γ),
it is said to be δ–thin if α Ă Nδpβ Y γq and the other two similar inclusions hold.

We have already seen that trees are 0–hyperbolic in this definition.

2.3. Insize. Define the inpoints of a triangle to be the uniquely determined three points (not necessarily
distinct) that split the sides into pairs of equal lengths as in the figure. These must exist (because the
triangle inequalities ensure that a “ r ` s, b “ s` t, c “ r ` t has a nonnegative solution).

z
z

““

{{{
{{{

Then the insize of a triangle is the diameter of the set of inpoints. Then a space is δ–hyperbolic by
the insize definition if there is a global bound δ on the insizes of triangles.

In a tree, the three inpoints coincide in the focus point of the tripod, so triangles are 0–hyperbolic in
the insize definition as well.

2.4. Treeishness. For any metric space X, define

KnpXq :“

"

´

dpxi, xjq
¯

ij
: px1, . . . , xnq P X

n

*

ĂMnˆnpRq.

Let Trin Ă MnˆnpRq be all the matrices corresponding to tuples that three-wise satisfy the triangle
inequality, and let Treen ĂMnˆnpRq be the union of KnpT q over all trees T .

Since triangles behave so differently in different curvature regimes, you might think that K3 is enough
to pick out curvature. But in fact it is easy to see that K3pE2q “ K3pHq “ K3pT q, where T is any tree
containing an infinite tripod. In fact, it’s worse than that: Misha Kapovich recently proved that almost
any unbounded length space has K3pXq “ Tri3. (The exceptions are coarsely equal to points, rays, and
lines!) I’ll give a precise statement of this theorem after we have defined quasi-isometry.

So three points tell you nothing (i.e., the sidelengths of a triangle do not detect whether it’s thin).
However, four points suffice! An alternate definition of δ–hyperbolicity is that X is δ–hyperbolic if
K4pXq Ă NδpTree4q. (You are free to choose your favorite reasonable metric on M4ˆ4, such as the one
given by the norm of a matrix being the sup of the entries.)

The next two definitions will illustrate why four points succeed where three points failed: K4 suffices
to pick out treeish behavior.

2.5. Pairsums. For four points x1, x2, x3, x4, a pairsum is dpxi, xjq ` dpxk, xlq, where ti, j, k, lu “
t1, 2, 3, 4u, so that there are exactly three differently-indexed pairsums for a four-tuple of points. The
pairsum (or four-point) definition of δ–hyperbolicity is that for all four-tuples of points in the metric
space, the two largest pairsums differ by no more than δ.
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It’s easy to see that trees are 0–hyperbolic in this definition as well, because the most nondegenerate
configuration of four points is

and the two largest pairsums are equal (the sum of all edge-lengths, with the “crossbar” counted twice).
This definition has the enormous advantage that it is applicable in spaces without geodesics. For

instance, it is an exercise to show that ultrametric spaces are hyperbolic, which includes the field of
p–adic numbers Qp, a totally disconnected metric space.

2.6. Gromov product. There’s another way to set up a four-point definition: define the Gromov
product to be

px ¨ yqw :“
1

2

`

dpx,wq ` dpy, wq ´ dpx, yq
˘

.

In a tree, this is easily seen to be the distance from w to the geodesic xy. More generally, it is proportional
to the failure of the triangle inequality to be an equality: if the side lengths of a triangle are called a, b, c,
then the triangle inequality ensures that a` b ě c, and its defect is the value ∆ “ a` b´ c ě 0. The
Gromov product is just half of this defect.

In a tree, consider a triangle with vertices x, y, z and an observation point w, and compare the Gromov
products px ¨ yqw, py ¨ zqw, and px ¨ zqw. There must be a unique path from w to the tree, intersecting
it at some unique point and creating the configuration seen in the figure above. Since that point is on
(at least) two of the tree sides of the tripod, there is guaranteed to be a tie for the smallest Gromov
product, so we have px ¨ yqw ě min

`

py ¨ zqw, px ¨ zqw
˘

. Loosening this by an additive factor of δ as usual,
we define a metric space to be δ–hyperbolic if all four-tuples satisfy

px ¨ yqw ě min
`

py ¨ zqw, px ¨ zqw
˘

´ δ.

2.7. Changing definitions. We will call a space simply hyperbolic if it is δ–hyperbolic in any of the
above definitions for any δ ą 0. However, note that there is no distinguished value of δ other than zero:
the property of being hyperbolic is well-defined, but the value of δ can change between definitions.

2.8. Examples. E2 is of course not hyperbolic because it has fat triangles. In fact appropriate “dila-
tions” produce obstructions to hyperbolicity. Note however that a Euclidean strip is hyperbolic.

We can put a 0–hyperbolic metric on R2 by making it an R–tree. (Indeed it is easy to convince
yourself of the so-called Connecting the Dots Lemma: a space is 0–hyperbolic iff it isometrically embeds
in an R–tree.) Examples are the SNCF metric or the Broadway metric, but not the taxicab (L1) metric.

Crucially, the hyperbolic plane is δ–hyperbolic. (You’ll compute δ values in the exercises.) Indeed,
any manifold with sectional curvature bounded away from zero (K ď ρ ă 0) is δ–hyperbolic for an
appropriately large δ. If it is not pinched, however, negative curvature does not suffice.

If the metric on H is rescaled to make the curvature more negative, the best value of δ shrinks. Indeed:
the “asymptotic cone” (rescaling limit) of H is an (uncountably branching) R–tree, and this is true for
any δ–hyperbolic space. Cool theorem due to Kapovich-Kleiner: for finitely presented groups, they are
hyperbolic iff some asymptotic cone is a tree.

Note that gluing in spheres (or any other sets) of bounded diameter does not ruin hyperbolicity. It is
a large-scale negative curvature property.

It is a theorem of Benoist that Hilbert metrics on convex bodies are hyperbolic if and only if the
boundary is sufficiently smooth (for instance, real-analytic will do; if there is a nice group action, then
C1 will do). (Theorem of Colbois-Vernicos-Verovic: this happens iff there is a bound on the areas of
ideal triangles. Recall that for H itself, all ideal triangles have area π.)

In low-dimensional topology, one often builds graphs or complexes to record the combinatorics, such
as the curve complex (or curve graph) which records intersections of curves on a surface. The curve
complex of a surface is 17–hyperbolic, and now there are also δ–hyperbolic complexes associated with
the outer automorphism group of a free group. This is useful because just acting nicely on a hyperbolic
space gives useful information about a group.
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3. Quasi-isometry, quasi-geodesics

3.1. Quasi-isometry. For me a pK,Cq quasi-isometric embedding (K ě 1, C ě 0) is a map of metric
spaces such that if d1, d2 are the distances between a pair of points before and after applying the map,
then

1

K
d1 ´ C ď d2 ď Kd1 ` C.

Two spaces are quasi-isometric if there’s some pK,Cq–QI embedding from one to the other whose image
is C–dense. (It’s easy to see that for such a map, there is a quasi-inverse given by taking each point
y P Y to any preimage of y1, where y1 is the nearest point in fpXq. This and a similar transitivity
argument explain why „

QI
is an equivalence relation.)

Note that a biLipschitz map would have just a multiplicative bound, so this should be thought of as
a coarse notion of biLipschitz.

Basic examples: Z
p1, 12 q
„
QI

R, Z2
p
?

2,
?

2
2 q

„
QI

R2.

Less standard definition (Druţu-Kapovich): X„
QI
Y iff there are separated nets A,B in X,Y respec-

tively such that pA, dXq is biLipschitz to pB, dY q. This works because when there is a minimum positive
distance, the additive constant in a QI can be absorbed by enlarging the multiplicative constant.

3.2. QI invariants.

Proposition 1. Hyperbolicity is QI invariant among geodesic spaces.

That is, if X„
QI
Y and X is δ–hyperbolic, then Y is δ1–hyperbolic, where δ1 depends on δ, K, and C.

To see what can go wrong in a general metric space, consider the pairsums definition of hyperbolicity.
In X, take four points with pairsums a` b, c` d, and e` f , where P “ a` b ě Q “ c` d are largest.
In Y , P 1 “ a1 ` b1 is at most pKa` Cq ` pKb` Cq “ KP ` 2C, while similarly Q1 ě 1

KQ´ 2C. These
can get very different! Knowing that P ´Q ď δ will not help give a uniform bound on P 1 ´Q1, which
can be about as big as KP ´ 1

KQ. Of course, this isn’t a proof: a concrete example due to Väisälä is
given below. We’ll postpone the proof of the proposition until we have the Morse Lemma as a tool.

Other QI invariants:

‚ Being finitely generated / being finitely presented. In fact, being Fn (having a KpG, 1q with
finite n–skeleton) is QI invariant, and these are the n “ 1, n “ 2 cases. (See Geoghegan’s
book for details.) These are examples of finiteness properties of groups, which include other QI
invariants as well.

‚ Number of ends: loosely, the number of connected components of XzBr for large r. Clearly
graphs can have any number of ends. However Hopf showed that groups can only have 0, 1, 2,
or infinitely many ends. Stallings proved a hugely influential theorem about ends that became a
prototype for how to relate coarse geometry to algebraic properties: a group has more than one
end iff it splits as a free product with amalgamation or an HNN extension over finite group(s).

‚ Asymptotic dimension: asdimpXq ď n iff for any separation constant d there are n`1 families of
d-separated, uniformly bounded open sets that together cover X. You can see that asdim R “ 1

by covering with intervals ( ) and that asdim R2 “ 2 by
covering with bricks. (Fatten up the ones in the picture to make overlapping open sets.)

Gromov defined asymptotic dimension, and he noted that asdim H=2, as you’ll check in the
exercises. Asymptotic dimension is known to be finite for: nilpotent groups (it equals the Hirsch
length), hyperbolic groups, mapping class groups, right-angled Artin groups, Coxeter groups,
and (strongly) relatively hyperbolic groups. It is infinite for the Grigorchuk group, and for the
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(finitely presented) Thompson’s group F . Osin even gave a finitely presented and boundedly
generated example with infinite asdim.

‚ Asymptotic cone (up to biLipschitz): this is the limit of the metric under a sequence of rescaling
constants that go to zero. In full technical glory, you want to take an ultralimit. For many
purposes, it suffices to consider a somewhat gentler Gromov-Hausdorff limit: Xn Ñ X if for
every R, the ball of radius R in Xn and the ball of radius R in X admit finer and finer nets of
indexed points so that the pairwise distances converge as nÑ8.

So the asymptotic cone of Ed is Ed, because Ed is invariant under rescaling of the metric. The
asymptotic cone of Zd with the standard generators is Rd with the L1 metric. If you change the
generators, you get Rd with a different norm, as I will explain further in a later lecture. The
asymptotic cone of a δ–hyperbolic space is 0–hyperbolic.

‚ Growth rate [see Lecture 4]
‚ Divergence (up to rate) and other “geometry at infinity” [see Lecture 5]
‚ Filling functions (up to rate) [see Lecture 7]
‚ Boundary (up to homeomorphism) and other “topology at infinity” [see Lecture 8]
‚ Lp cohomology [go read about it somewhere else!]

Now we can go back and state the theorem of M. Kapovich on the uselessness of K3 somewhat more
carefully. It is true for all X that K3pXq Ă Tri3. Clearly if X is QI to a point, ray, or line, then K3 is
much smaller than Tri3. Kapovich shows that if X is a length space which is not QI to those exceptions,
then K3pXq contains the whole interior of Tri3. If in addition X has arbitrarily long geodesic segments,
then K3pXq “ Tri3 exactly. So K3 detects almost nothing of the geometry of X.

3.3. Quasi-geodesics. Quasigeodesics are QI embeddings of the real line. They need not be continuous
images (paths). The condition only requires that there are constants K,C such that

1

K
¨ |t2 ´ t1| ´ C ď dpγpt1q, γpt2qq ď K ¨ |t2 ´ t1| ` C.

What we will see is that quasigeodesics are very tame in hyperbolic spaces, but wild in flat spaces.

Example 2. Take two rays from the origin pointing in the first quadrant, say, and create a piecewise
straight path between them that travels horizontally and vertically, turning when it hits a ray. It is at
worst

?
2 off from being geodesic.

Example 3 (Väisälä). Fancier example. Let V “ tpx, |x|qu Ă R2 with the induced metric from Euclidean
space, which you will note is NOT a length metric! Then x ÞÑ px, |x|q is a quasi-isometric embedding
RÑ V which is surjective, so V is a quasigeodesic. Incidentally this serves as an example to show that
quasi-isometry need not preserve hyperbolicity among non-geodesic spaces. Take any four points on
the V with top two pairsums not equal. By dilating the picture, you can make the difference between
pairsums arbitrarily big.

Example 4. Spirals in the plane can also be quasigeodesic! You’ll work this out in the exercises.
This illustrates that quasigeodesics are terribly wild in Euclidean geometry, which is a sign that quasi-
isometries can behave very violently on flat spaces, even “wrapping them all the way around many times”
to turn a straight line into a spiral.

Example 5. k–local geodesics (paths for which every subpath of length k is geodesic) were introduced
in Day 1 exercises, where you showed that in a δ–hyperbolic space, an 8δ–local geodesic must be within
2δ of any true geodesic between the same endpoints. (Note this is horribly false in general: for example,
in the L1 metric on the plane, consider the path p0, 0q–pN, 0q–pN,Nq–p0, Nq. It is an N–local geodesic
but has points at distance N from the only true geodesic between its endpoints.)

Something further is true: an 8δ–local geodesic in a δ–hyperbolic space must be quasigeodesic. This
will be an exercise.

Later we’ll show a stronger statement of the tameness of quasigeodesics in hyperbolic spaces: all
quasigeodesics are close to true geodesics.
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4. Groups and growth

4.1. Cayley graphs. CaypG,Sq denotes the Cayley graph of group G with generating set S. This graph
has vertex set V “ G and edges (marked with an a) between g and ga for a P S. From now on we will
make the standing assumption (unless otherwise noted) that gensets are finite and symmetric (S “ S´1)
and these will be undirected graphs with finite degree. So now, endowing the Cayley graph with the
simplicial graph metric, we can officially talk about the geometry of groups.

It’s actually hard to tell whether a graph is a Cayley graph (though it is necessary that it be vertex
transitive), and really hard to tell whether a graph is “nearly” a Cayley graph. The graph theory of
Cayley graphs is already subtle for finite groups: it’s an open question whether every Cayley graph of a
finite group has a Hamiltonian cycle, for instance.

Woess asked, in the 1980s: Can you find a (connected, locally finite) vertex transitive graph that
is not QI to any Cayley graph? Two computer scientists, Diestel and Leader, constructed a family of
graphs hoping to produce examples. The Diestel-Leader graphs DLpm,nq are built from a pair of
trees (one m ` 1–regular and the other n ` 1–regular) by a construction called a horocyclic product.
The DLpn, nq are Cayley graphs for certain groups called lamplighter groups, Zn oZ. DL conjectured
that for m ‰ n, these were not QI to Cayley graphs, and this remained open for a long time.

4.2. Milnor-Schwarz Lemma. Let’s say a geometric action is one that is isometric, cocompact, and
properly discontinuous (for each compact K, only finitely many group elements fail move K off itself).
Then we have the crucially important lemma of Schwarz and, later, Milnor.

Lemma 6 (Fundamental Observation of Geometric Group Theory). If G acts geometrically on a proper
geodesic metric space X, then G is finitely generated and CaypG,Sq„

QI
X for any finite genset.

This is quite easily proved; the distance distortion between two Cayley graphs, for instance, is bounded
in terms of the longest spelling length of a generator from one genset with respect to the other. Finite
generation of G comes from considering a ball large enough that its G–translates cover X. Then there
are only finitely many group elements that fail to move it off of itself, and these generate G.

In particular, since CaypG,Sq„
QI

CaypG,S1q for any two finite gensets: if you are only considering QI

invariant properties, then any locally finite Cayley graph will do. To illustrate the subtlety here, all
hell breaks loose when we consider infinite S, even for finitely generated groups: It is a tantalizing open
question proposed by Rich Schwartz to decide whether CaypZ, t2nuq„

QI
CaypZ, t3nuq. See exercises!

Since hyperbolicity is QI invariant, we can now define a hyperbolic group to be a finitely generated
group with some δ–hyperbolic Cayley graph, such as Fn or Z, because in each case the graph in the
standard generators is an actual tree. Important examples come from fundamental groups of compact
hyperbolic manifolds, like π1pΣgq in the surface case. The uniformization theorem tells you that these
groups act isometrically by deck transformations on H, and the action is free and cocompact, so the
group is QI to the hyperbolic plane itself. SL2pZq is a slightly more sophisticated example, because its
action on H is not cocompact, and we will establish its hyperbolicity below.

How about the converse of FOGGT? Only in special cases. For instance, groups QI to R act geo-
metrically on R. Tukia proved for n ě 3: if G„

QI
Hn, then G acts geometrically on Hn. This is true for

n “ 2 but much harder!

4.3. QI rigidity. Gromov set up a program to classify groups by quasi-isometry type. Say that a class
of (fin-gen) groups is QI rigid if any group QI to a member of the class is virtually isomorphic to a
member of the class. (Virtual isomorphism is a bit technical: isomorphism between respective quotients
of finite-index subgroups by finite groups. It turns out to be the best you can hope for.)

QI rigid classes include: hyperbolic groups; virtually abelian groups; virtually nilpotent groups (by
Gromov’s Polynomial Growth Theorem, stated below); virtually free groups (central idea: Stallings’s
Theorem on ends); amenable groups; many classes of lattices in Lie groups; fundamental groups of closed
hyperbolic n–manifolds; and lattices in Sol, the 3–dimensional solvable model geometry.

Non-rigid classes include: virtually solvable groups (Erschler); fundamental groups of nonpositively
curved (i.e., CAT(0)) manifolds; and groups that act geometrically on a CAT(0) space.
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Note: the Eskin-Fisher-Whyte work on Sol also proved the Diestel-Leader conjecture as a corollary
of the main approach!

4.4. Growth functions, growth series. Growth functions with respect to generating sets count the
number of points in the ball of radius n in the Cayley graph: the growth function is βpnq :“ |Bn| and
the spherical growth function is σpnq :“ |Sn| “ βpnq´βpn´1q. When necessary we can decorate β with
G and S as βSG, since as a precise function it certainly depends on S.

One trivially gets an exponential upper bound on growth by expressing any word of length at most
n with a string of generators, padded out to length exactly n by the identity: βSpnq ď p|S| ` 1qn.

Let us define rate equivalence by fptq ĺ gptq if DA ą 0 such that fptq ď AgpAt ` Aq ` At ` A for
all t ą 0. Say f — g if f ĺ g, g ĺ f . Note rate picks out polynomiality (being bounded above by a
polynomial) and even degree (though identifies linear/sublinear), also picks out exponentiality (being
bounded below by et). The additive factor of At might seem strange, but it will be needed later to make
certain filling functions QI invariant.

Then one shows that (up to —), growth is a QI invariant for groups. This is because if f is a QI then
fpBrq Ă BKr`C . Furthermore by the QI condition only finitely many points can map to any one point
(looking back at the definition, d2 “ 0 ùñ d1 ď KC), so βXpnq ď KC ¨ βY pKn ` Cq and vice versa.
So from now on we can talk about rates of growth without specifying S.

This gives us our first argument that Zm„
QI

Zd ðñ m “ d, because βZdpnq — nd.

Recall that a (f.g.) nilpotent group is one for which nested commutators are eventually trivial. And
recall that a group virtually has a property if some finite-index subgroup has the property. Now we can
state Gromov’s theorem: a finitely generated group is virtually nilpotent iff it has polynomial growth.

Actually it is useful to note that QI invariance of growth rates works for discrete spaces more generally
than Cayley graphs, if the growth function is given with respect to a basepoint. And indeed it works for
nets, so it transfers to Riemannian volume: if a f.g. group acts geometrically on a Riemannian manifold
(connected, complete, with bounded geometry), then βpnq — VolpBnq.

Theorem 7 (Coornaert). Non-elementary hyperbolic groups have definite exponential growth:

C1α
n ď βSpnq ď C2α

n

with respect to any generating set. (α “ αpSq)

Certainly not all groups of exponential growth are hyperbolic: e.g., F2 ˆ Z. Note that the growth
rates you can see for compact surface groups are 1, n2, en, since uniformization tells us that the universal
covers are S2,E2,H. For 3–manifolds, the full list turns out to be 1 — n, n3, n4, en, by geometrization.

One might well wonder: Are there f.g. groups of intermediate growth between polynomial and expo-
nential? A famous theorem of Grigorchuk constructs such a group. (However it is not finitely presented
and it’s not known if that’s possible.)

4.5. Growth series. Given a growth function, consider the series given by the associated generating
function F pxq “

ř

βpnqxn. One might wonder whether the series is rational, i.e., F pxq is a ratio of
polynomials.1 Note that rational growth can occur in polynomial or exponential growth regimes: you
can check that so 1{p1´ xqk forms a series whose coefficients are polynomial of degree k. On the other
hand, 1{p1´ 2xq “

ř

2nxn has exponentially growing coefficients.

Some theorems:
Benson: virtually abelian groups have rational growth with respect to all gensets.
Cannon: hyperbolic groups have rational growth with respect to all gensets.
Shapiro: the Heisenberg group has rational growth with respect to the standard genset.
Stoll: the 5D Heisenberg group does not!! It has rational growth wrt a special (“cubical”) genset, but

transcendental in the standard generators.
Duchin–Shapiro: nevertheless, HpZq has rational growth wrt all gensets.

1The reason that rational growth is interesting is that it gives a recursive relationship among the βpnq values, so you
can generate all values of the β function from the knowledge of finitely many, and this turns out to be equivalent to being

able to draw the full Cayley graph from the information in a finite portion.
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5. Morse lemma, divergence, contraction

It is immediate to see that in a hyperbolic space, two geodesic segments between the same two
endpoints must be δ–close (for the δ in the thin triangles definition). That’s just because you can form
a geodesic triangle by splitting one of the segments in half, and every point on the other segment must
be δ–close to one of the halves. You can think of this as geodesic stability.

It takes a bit more work to establish quasigeodesic stability.

5.1. Detours. We begin with a crucial observation: to avoid a ball in a hyperbolic space, you have
to take a detour of exponential length. For instance in H, circumferences of metric circles have length
sinh r „ er compared to their diameter 2r, while in trees there is no such detouring path at all!

Bridson-Haefliger sets this up very elegantly. Draw your own pictures to track the arguments.

Lemma 8. If a path between points on a geodesic avoids some ball BDpxq centered at any x on the

geodesic, then its length ` satisfies ` ě 2
D´1
δ .

Proof. Suppose γ is your avoidant path and α is the geodesic being avoided. We’ll take an arbitrary

point x on α and show that d “ dpx, γq satisfies `pγq ě 2
d´1
δ .

Let ` “ `pγq and fix the n so that `
2n`1 ď 1 ď `

2n . Now subdivide γ into 2n equal-length subsegments,
so that each has length `{2n. Consider the geodesic triangle formed by α and the midpoint of γ. This
has two neighboring geodesic triangles formed by each new side together with the points 1{4 and 3{4 of
the way along γ, and each of these has two neighboring geodesic triangles with the 1{8 points, and so on.
Let x1 be the closest point to x on either of the new sides of the first triangle; let x2 be the closest point
to x1 on either of the sides of a successive triangle, and so on. By thin triangles, we have dpxn, xq ď nδ.
On the other hand, xn is on a geodesic segment of length `{2n, so if we let y be the nearer endpoint on

γ, we have dpx, γq ď nδ ` `{2n`1 ď nδ ` 1. From d ď nδ ` 1, we get d´1
δ ď n, so 2

d´1
δ ď 2n ď `, as

desired. We’ve bounded d from above relative to `, so taking x to be a point on α which is at least D
from γ, we also get a bound on `pγq from below relative to D. �

5.2. Quasigeodesic stability.

Theorem 9 (Morse Lemma). In a δ–hyperbolic space, for every K and C there is an M such that every
pK,Cq–quasigeodesic segment is M–close to every true geodesic between the same endpoints.

Still following Bridson-Haefliger, I will sketch a proof in the case that β is a pK,Cq–quasigeodesic
segment that is a path (a continuous embedding of an interval). (This is not too much of a worry, because
for any quasigeodesic one can find a nearby continuous path.) Let α be the true geodesic between the
same endpoints. Let x be the point on α that is farthest from β, and let that distance be D. We begin
by finding an upper bound on D. To do this, just note that all of β must avoid the (open) D–ball
centered at x, just because x never gets closer than D to β. Let p, q be points on α just outside that
D–ball, say at distance 2D from x on either side. (Really anything larger than D will do, so take the
endpoints if they are closer than 2D from x.) Let their closest point projections to β be called p1, q1, and
let γ0 be the subsegment of β from p1 to q1 and γ be the path from p to q obtained by pp1 followed by γ0

followed by q1q. Since γ avoids BDpx0q, its length satisfies 2
D´1
δ ď `pγq. On the other hand, there is a

path between the endpoints of γ0 of length at most 6D because dpp, p1q, dpq, q1q ď D by definition of D,
and dpp, qq “ 4D. By quasigeodesity, `pγ0q ď 6DK ` C, and thus `pγq ď 6DK ` C ` 2D. So we have

2
D´1
δ ď 6DK ` C ` 2D,

which fails for large D, so there is an upper bound D0 on the possible values of D. We are now almost
done. The last thing to worry about is the possibility that β might take a long sojourn away from α, even
though α is always uniformly close to some point of β. But for this to happen, consider the subsegment
of β consisting of the sojourn outside of NDpαq. It begins and ends at points that are at most 2D from
each other (since they are at most D from some point on α), so the quasigeodesity condition ensures
that its length is bounded, and this completes the argument.

Consequence: fellow-traveling. If two quasigeodesics have close starting points and close ending
points, then there is a bound on how far apart they are in terms of K, C, and the meaning of “close.”
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5.3. Divergence. We recall that in a tree, rays from a common basepoint agree exactly until they
diverge completely. From this and from the qualitative behavior of negatively curved spaces, we should
expect that hyperbolic spaces have fast, probably exponential, divergence of geodesics. However, it won’t
do to take a pair of rays γ1, γ2 and simply measure the separation dpγ1ptq, γ2ptqq, because the triangle
inequality ensures that this is always ď 2t.

Instead, we can define the divergence of geodesics as follows: if γ1 and γ2 are rays from a common
basepoint x0, then let divpγ1, γ2, tq be the length of the shortest path from γ1ptq to γ2ptq avoiding Btpx0q

(if such a path exists).
Then let γ1, γ2 be the rays pointing opposite directions along a bi-infinite geodesic in a δ–hyperbolic

space. The detour estimate above immediately gives us div ě 2pt´1q{δ ľ et.
By contrast, for any two rays in the Euclidean plane, div “ 2πθt, an exactly linear function with

coefficient given by the angle between the rays. So divergence seems to successfully distinguish curvature
regimes.

Proposition 10. In any δ–hyperbolic space, if two rays γ1, γ2 in the same end eventually separate by
more than 2δ, then divpγ1, γ2, tq — et.

Indeed, this fact that past a threshold separation, divergence is exponential turns out to be an alternate
definition of δ–hyperbolicity.

Now let us try to use divergence to attach an invariant to spaces and groups. We need to be a bit
careful to make it a QI invariant, which we’ll do following the setup of Gersten. Define divpXq, the
divergence rate of a space X, as follows. First define functions

fρptq :“ sup
x,yPStpx0q

inf `pγq

for 0 ă ρ ď 1, where the inf is over all paths γ from x to y in XzBρtpx0q. (The role of ρ is to allow the
filling path to dip some fixed proportion inside Bt, which is necessary for QI invariance.) Then you get
a family tfρuρ of functions of t. We’ll say that divpXq — tn if fρptq — tn for all sufficiently small ρ. This
is the meaning of polynomial divergence, and exponential divergence is defined similarly. So we see that
divpEdq — t and of course divpHq — et.

Quick facts: of course, nonelementary hyperbolic groups have exponential divergence; nilpotent groups
have linear divergence (see exercises); NPC symmetric spaces have linear or exponential divergence; right-
angled Artin groups have linear or quadratic divergence, mapping class groups have quadratic divergence;
and there are CAT(0) groups, and even right-angled Coxeter groups, with every polynomial degree of
divergence. This last fact is a recent theorem of Dani-Thomas.

WARNING! Many authors (Bridson-Haefliger, Papasoglu, Short et al) use a different definition of
divergence for spaces that is problematic because it asks for a precise divergence function bounding all
pairs of rays rather than a global rate like this. With their definition, it is not even the case that the
divergence of flat spaces is linear. (Since the divergence function of a pair of rays in the flat plane is 2πθt,
there is no one linear function that lower-bounds them all!) This is how it is possible to find statements
in the literature such as “unbounded divergence implies exponential divergence.”

5.4. Contraction. We’ve already seen that straying far from a geodesic forces you to be long; on the
other hand, projection to a geodesic makes you teeny.

The strong contraction property sounds so strong you might have to check that you read it right.
In a δ–hyperbolic geodesic space, there exists M ą 0 depending on δ such that for any geodesic γ, and
any ball Brpxq of arbitrary radius that is disjoint from γ, the closest-point projection of the ball to the
geodesic has diameter at most M .

Alternate statement of strong contraction: there exists M ą 0 so that if any geodesics α, β satisfy
β XN2δpαq “ H, then the closest-point projection projαpβq has length ďM .

These are not-too-hard consequences of hyperbolicity, left to the exercises. The fact that all geodesics
are contracting in this way is yet another alternate definition of hyperbolicity, but this is interesting partly
because some geodesics even in non-hyperbolic spaces behave this way. We can call these contracting
geodesics.
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6. Algorithmic problems, Dehn’s algorithm

There are three classical algorithmic decision problems for groups. First is the word problem,
which asks for an algorithm to tell if two words represent the same group element. Second is the
conjugacy problem, which takes two words and asks if they are in the same conjugacy class. Finally,
the isomorphism problem is to decide whether two different presentations represent the same abstract
group. More recently a lot of attention has turned to the equation problem: If I give you a word in
group elements and variables and ask if there are values of the variables for which w “ 1, is there an
algorithm to decide yes or no? (Variations: systems of equations; systems of equations and inequations.)

Interestingly, there are long-known classes of groups for which each of these problems is undecidable,
since Novikov 1955.

Hyperbolic groups have a decidable word problem by an easy algorithm due to Dehn, discussed below.
Massively hard work due to Rips, Sela, Dahmani-Guirardel, and others shows that hyperbolic groups
also have decidable conjugacy, isomorphism, and equation problems (even for systems of equations and
inequations).

6.1. Dehn presentations. Let us say that G “ xa1, . . . , an
ˇ

ˇ r1, . . . , rmy is a Dehn presentation of G
if the following very special set of circumstances is in place:

‚ There is a set of strings u1, v1, . . . , um, vm and each relator ri is of the form ri “ uiv
´1
i . (Relator

ri encodes the equivalence in the group of ui and vi.)
‚ For each i, the spelling length of vi is shorter than the spelling length of ui.
‚ For any nonempty string w in the alphabet S “ taiu that represents the identity element, if w

has been reduced by canceling all occurrences of aia
´1
i , then at least one of the ui or u´1

i must
appear as a substring.

This last bullet point is a lot to ask! In general, given a presentation, the word problem is hard: you
can look at a long string of generators, and there’s no good way to see whether it simplifies, because you
might have to first use one relation in the group that makes the string longer before you can use another
relation that makes it shorter. A Dehn presentation is special because any string can be simplified by
using one of finitely many moves, each of which makes the string strictly shorter. Thus the number of
replacements required is less than the initial length of the string.

As a trivial example, F2 “ xa, b
ˇ

ˇHy is a Dehn presentation with m “ 0. This works because there
are no spellings of the identity left after words are reduced.

As a less trivial example, consider the presentation PSL2pZq “ xJ,B
ˇ

ˇ J2, B3y. The Cayley graph is
nearly a 3–regular tree: it has triangles labeled by B–edges, mutually connected by J–edges. We can
form a Dehn presentation with u1 “ B2, v1 “ B´1, u2 “ J2, and v2 “ I, clearly satisfying the first
two bullet points. For the third, we see from the Cayley graph that any nontrivial loop with no J2 or
JJ´1 must contain a path around one of the B–triangles. Thus it has a B2 or B´2 substring.

A similar idea works for surface groups; consider for example π1pΣ2q, the fundamental group of the
genus-two surface, which by Poincaré’s Theorem has the presentation

xa, b, c, d : ra, bs¨rc, ds y.

The idea is that any loop includes some combination of backtracking and at least six letters of the
length-eight relator. So the shortening method works much the same as when dealing with the triangles
in the PSL2pZq case: begin with the length-eight string aba´1b´1cdc´1d´1 and consider all of its cyclic
permutations (ba´1b´1cdc´1d´1a, etc). Put all of the six-letter initial substrings of these as the ui and
their two-letter counterparts as the vi.

Now we need to convince ourselves that this is indeed Dehn. We know from the classical Poincaré
theorem that the fundamental domain for the action of this group on H is an octagon in the hyperbolic
plane, and we can draw the Cayley graph as the dual graph to this octagonal tiling. The graph will
therefore have an octagon corresponding to the basic relator, enclosing a vertex around which there are
eight tiles. By symmetry, the whole Cayley graph can be drawn in the plane as a graph of octagons.
A nice way to visualize this combinatorics precisely is to draw a schematic that organizes the octagons
by their distance from the central octagon. I am adapting this visualization directly from Stillwell’s
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P

Q

R
P

Q

R

5 edges

6 edges

Classical Topology and Combinatorial Group Theory. It is an excellent way to understand the sense in
which the structure of the genus two surface group is tree-like but not a tree.

Begin with an arbitrary octagon in the tiling and construct a diagram by arranging its vertices and
edges around the unit circle C1 in the plane. Then arrange the neighboring octagons radially around
it, with the next ring being formed by those that share either an edge or just a vertex with the center
tile, and all of those lying between the circles C1 and C2; continue this way. Every octagon appears
exactly once in this arrangement, and—aside from the central one—lies between the circle Ck and the
circle Ck`1 for some k. Any such octagon either has 0 or 1 edges on Ck, and accordingly it has either 6
or 5 edges on Ck`1. (The octagon containing the vertices marked P , Q, and R in the figure is the first
case, and the one on the other side of edge PQ is the second.) Now consider an arbitrary loop along
edges in the diagram. It touches some outermost circle C. If the loop ever traverses an edge and then
immediately backtracks, then that represents a trivial cancellation aia

´1
i . Otherwise it reaches C along

a radial edge, travels along C, and then returns along a different edge. But then that word contains 6
of the edges around a single octagon (the radial edge plus at least 5 edges on the outer circle).

Thus we can see that the tiling is rapidly branching, and though it is not a tree (there is more than
one way to reach a vertex), alternate paths are costly.

6.2. Dehn’s algorithm.

Theorem 11. Hyperbolic groups admit Dehn presentations.

Proof. Fix any K ą 8δ; if you know δ, then this is a constructive proof; if you don’t, then it’s just an
existence proof! Then consider an arbitrary (finite) generating set S “ taiu for G and form all freely
reduced spellings ti with spelling length at most K. There are a lot of these, but only finitely many. The
group was given to you either by a Cayley graph or by some presentation, which you can use to build
out finitely much of the Cayley graph in finite time. So now you can check which of the ti represent the
same group element by just following them in the graph. Let the ui be the non-geodesic spellings from
that list, and for each ui, let vi be some geodesic spelling of the same group element, so it is guaranteed
to be strictly shorter. Then put R “ tri “ uiv

´1
i u, and I claim G “ xS|Ry is a Dehn presentation.

The first two bullet points are satisfied by construction. For the third, note that there are no 8δ–local
geodesic loops of length at least 8δ in a δ–hyperbolic space. (This follows from the fact that any 8δ–local
geodesic stays within 2δ of the true geodesic between its endpoints.) So any loop longer than 8δ has a
non-geodesic subsegment of length ď K, which is one of our ui above. If the loop is shorter than 8δ,
then it is one of the ui. This verifies the last condition. �

This gives us Dehn’s algorithm for solving the word problem in hyperbolic groups: starting with
a word that may or may not represent the empty word, we seek these ui subwords. Each time we can
replace one with its corresponding vi, we have shortened our word. If we find no ui and no trivial
cancellations aia

´1
i , we halt, and if there are any letters left, our original word was nontrivial in the

group. This actually solves the word problem in linear time.
You may not be surprised to hear: a group is hyperbolic if and only if it has a Dehn presentation.

However, there are other groups with fast algorithms for the word problem, such as free abelian groups!
(Just check if each exponent sum is zero.)
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7. Filling

7.1. The isoperimetric problem. The classical isoperimetric problem in the plane asks how to ex-
tremize the relationship between the length of a loop and the area it encloses: in other words, find
supγ infD ApDq, where A stands for area, the sup is over loops γ of length at most 1, say, and the inf is
over fillings, i.e., topological disks with boundary γ. As we know, this sup is achieved for circles, where
the value is 1{4π. By dilating, we know that circles give the best answer on every scale. We can set up
a generalization by defining an isoperimetric function fp`q “ sup`pγqď` infD ApDq, and now of course we

get fp`q “ `2{4π, a quadratic function of length.
In general it will be really hard to compute this minimax problem exactly, so we will be content with

finding rates of growth; here fp`q — `2.
What about the hyperbolic plane? It will turn out that round circles are still optimal; but here, for a

circle of radius r, the circumference and area are both on the order of er, so we get fp`q — `. Fillings are
actually “cheaper” in hyperbolic spaces! (Though maybe this isn’t so surprising, since loops themselves
are so expensive relative to their diameter.)

We could have set up this definition in any Riemannian manifold or symmetric space, using length
and 2–volume.

7.2. Dehn functions. To define filling functions in groups, we need a notion of area. We will build a
Cayley 2–complex associated to a presentation: begin with a Cayley graph; paste in 2–cells corresponding
to the relators in the presentation; and add 2–cells for all of their conjugates. This is the universal cover
of the presentation 2–complex built on a single vertex with loops for generators and 2–cell for relators.
(Note: You can always add higher cells to the presentation 2–complex to get a KpG, 1q for the group.)

If a word represents the identity element, then of course it corresponds to a loop in the Cayley graph,
and since our Cayley 2–complex is simply connected, that loop is null-homotopic. Define a filling of the
loop to be the cells crossed in a null-homotopy; then area of a loop is the least number of 2–cells you
must slide the loop across to trivialize it. Example: Z2 “ xa, b : ra, bsy , the word anbna´nb´n has area
n2, though of course it also has less efficient fillings corresponding to homotopies that enlarge it before
shrinking it.

The Dehn function is then the function fpnq as above. One shows that this does not depend on the
presentation (up to —) and indeed that if we take a slightly coarser notion of area we get a QI invariant,
so the Dehn function of Z2 is precisely n2, and the Dehn function of Zd is still n2 for any d ě 2.

Loosely, we can get coarse filling area in metric spaces by defining a filling to be a map from a disk
in R2 to X that takes the boundary to the loop to be filled, and takes the unit grid of points in the disk
to a net of bounded mesh in the space. Then the least Euclidean area of such a disk can be taken to
be the filling area of the loop. Also this means that for more generality we could have worked in any
model space on which G acts geometrically. But one has to be very careful about definitions and there
are many subtleties in the QI invariance arguments in different settings.

7.3. Hyperbolic groups.

Proposition 12. Hyperbolic groups have linear Dehn functions.

Proof. Dehn’s algorithm! In the presentation complex for the Dehn presentation, each replacement of
ui with vi slides across a single cell, and this only needs to be done at most n times. �

The two other pieces of this story are remarkable: anything with a linear Dehn function is hyperbolic,
and anything that is not hyperbolic has at least a quadratic Dehn function. (These can be proved by
clever but basically standard hyperbolicity arguments.) So there is a gap between linear and quadratic
rates of filling—for instance, you can’t engineer a group with n3{2 or n log n Dehn function. And, taken
together, these facts mean that linear (or indeed subquadratic) filling functions provide yet another
alternative definition of hyperbolic spaces.

7.4. A few other examples. The Dehn function of the Baumslag-Solitar group BSp1, 2q “ xa, b :
bab´1 “ a2y is easily seen to be exponential by taking a loop that’s half in one plane-of-bricks and half
in another. To be explicit: one considers the word ab´kabka´1b´ka´1bk, shown in red for k “ 4.
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The length of this word is linear in k (namely 4k ` 4) but any filling contains the cells that are shown,
and there are 2k`1 ´ 2 of them.

The Heisenberg group has cubic Dehn function, but Allcock showed that the higher Heisenberg groups
have quadratic Dehn function.

For the linear groups SLnpZq, we know that the Dehn function is linear for n “ 2 because the group
is hyperbolic, and Thurston showed that it is exponential for n “ 3. He conjectured that it then drops
to quadratic for all n ě 4! This was recently proven by Robert Young for n ě 5 and is still an open
problem for n “ 4.

Automatic groups have quadratic Dehn function, and this includes mapping class groups. However,
OutpFnq and AutpFnq both have exponential Dehn function for n ě 3.

7.5. Higher Dehn functions, higher divergence functions. Isoperimetric inequalities can be stud-
ied in higher dimension, for instance by filling spheres Sk of at most a certain k–volume by balls Bk`1.
(One could also loosen up the topology: for instance, instead of a disk, a loop can be filled with any
surface with circle boundary.) Or one can do things in the homological category, filling cycles by chains.
If you do this very carefully, you can get QI invariants for each dimension k. And for reasonable defi-
nitions of higher filling functions, hyperbolic groups have linear Dehn functions in every dimension (see
Mineyev/Lang).

Briefly, let me note that the divergence of geodesics, which studied how hard it can be to connect two
points with an “avoidant” path, admits a nice generalization to higher dimension similarly. A pair of
points is a 0–sphere, and a path is a 1–ball. Instead, we can study the filling of avoidant k–spheres with
avoidant pk ` 1q–balls.

As motivation for why you might want to do this, note that you get some QI invariants this way
which distinguish more different kinds of spaces. For instance, higher divergence functions detect the
rank of a symmetric space (Hindawi/Leuzinger), and they give finer distinctions between right-angled
Artin groups than were previously available (giving new results in the QI classification of RAAGs).

7.6. The Dehn spectrum and Wenger’s results. What are the possible growth rates of Dehn
functions? First, consider the powers of growth, defining the “isoperimetric profile” to be

IP “ tα P r1,8q : δGpnq — nα for some f.g. Gu.

Then IP “ t1u Y r2,8q and QX r2,8q Ă IP. Amazingly, for higher Dehn functions, there is no gap! In
all dimensions bigger than 1, QXr1,8q Ă IP. This combines work of Brady, Bridson, Forester, Shankar,
and others.

What else can you see besides power growth and exponential growth? Iterated HNN extensions of
BSp1, 2q have Dehn functions that are towers of exponentials of any height! And this can be done for
higher Dehn functions as well.

There is also non-power growth in the polynomial range. For k–step nilpotent groups, the Dehn
function is ĺ nk`1. Wenger constructs a class of 2–step nilpotent groups in which n2 ň δpnq ĺ n2 log n.

Wenger also proves a remarkable sharpening of Gromov’s gap: not only is there a gap between linear
and quadratic rates of growth, but indeed if the isoperimetric function in a geodesic space satisfies
fp`q ď p1 ´ εq`2{4π for any ε ą 0, i.e., if it is even the slightest bit less than the Euclidean rate, then
the space is hyperbolic.
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8. Boundaries

8.1. Bordification. A bordification of a metric space X will be some Hausdorff space X̄ in which X
embeds as an open, dense subset. For a given bordification, the boundary of X is BX :“ X̄zX. This
may or may not be a compactification.

A basic example is the one-point compactification: take X̄ to be X plus a single point, and take basic
open neighborhoods of the point to be itself plus complements of closed balls in X. But this is a special
case of the ends compactification: one can take X̄ “ X Y EndspXq. Earlier, ends were informally
defined as connected components of XzBrpx0q as r gets large. More formally, ends are equivalence
classes of proper paths based at x0: two paths are equivalent if for every r there exists some time after
which the paths are in the same connected component of XzBr. Similarly a sequence of points xn in X
converges to an end rγs if for each large r there exists an n after which the xn are in the γ component
of XzBr. Clearly for one-ended spaces (like R2), this recovers the one-point compactification.

8.2. Visual boundary. Define the visual boundary of a geodesic space X to be

B8pXq “ B8pX,x0q “ tgeodesic rays γ based at x0u
L

„ ,

where γ „ γ1 if γ1 Ă Nmpγq for some m ă 8 (i.e., if they stay within some bounded distance forever, in
which case we call them asymptotic). If ξ “ rγs P B8X, we also say that γ is asymptotic to ξ. We think
of B8X as the “lines of sight” from x0.

This boundary has a nice topology: two rays are close if they stay within distance m for a long time,
so a sequence of rays γn converges to γ if the length of time for which γn fellow-travels γ to within some
m goes to infinity as nÑ8. (That is, use the compact-open topology.)

In E2, as in H, no distinct rays emanating from x0 are asymptotic, so the visual boundary is just the
set of directions, parametrized by angle θ P S1. The topology is just the standard topology on the circle,
so B8pE2q – B8pHq – S1. In a tree it is also true any distinct rays give different boundary points. In
the four-regular tree that gives the standard Cayley graph for the free group F2, it’s easy to see that the
boundary is uncountable, with the topology of a Cantor set.

This construction can produce funny fractal boundaries: Kapovich-Kleiner show that if the visual
boundary of a hyperbolic group is 1–dimensional, connected, with no local cut points, then it is homeo-
morphic to either a Sierpinski carpet or a Menger sponge.

8.3. Visual boundaries of hyperbolic spaces, and visual metrics. For hyperbolic geodesic spaces,
the visual boundary is a quasi-isometry invariant, up to homeomorphism. That is, if f : X Ñ Y is a
QI embedding, then f extends continuously to B8X. The proof is essentially what you would expect:
geodesics in X are mapped to quasigeodesics in Y , which are close to geodesics that are all mutually
asymptotic, so there is a well-defined point of B8Y associated to each point of B8X. Continuity is
because if a sequence of boundary points ξn P B8X converges to ξ P B8X, then there are corresponding
geodesic rays that fellow travel one ray for longer and longer times, and after applying the quasi-isometry
we can arrange that this is still true.

Thus Hm„
QI

Hd ðñ m “ d, and cocompact lattices Λ ď SOpm, 1q and Γ ď SOpd, 1q are QI iff

m “ d. This is just because B8pHdq – Sd´1.
Recall the Gromov product py ¨zqw, which was defined as half the defect in the triangle inequality, and

comes close to measuring the distance of w to yz. This extends to a Gromov product on the boundary by
defining pξ ¨νqx0

“ limtÑ8pαptq¨βptqqx0
where ξ “ rαs, ν “ rβs. If rays fellow-travel a long time, then the

Gromov product is large. So we can put a visual metric on the boundary defined by dpξ, νq :“ e´pξ¨νq,
and this will be compatible with the topology already defined.

Notice how similar this is to the p–adic norm: things are p–adically close if they agree for a long time
in their p–adic expansions. (Yet more evidence that Qp is legitimately hyperbolic.)

8.4. Basepoint independence and visibility. In the hyperbolic setting, for any basepoint x0 P X
and boundary point ξ “ rγs P B8X, there is a geodesic ray based at any other point p P X and
asymptotic to γ. This is found by considering the sequence of geodesic segments from p to γpnq and
applying Arzelà-Ascoli. So we really didn’t need to fuss about basepoints.
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Similarly, there is a bi-infinite geodesic between any two points on the boundary: consider the geodesic
segments from αpnq to βpnq. By thin triangles, these all dip back to some neighborhood of where α and
β separated. But then we can again apply Arzelà-Ascoli to get a limit. When any two points on the
boundary can “see” each other in this way, we call the space a visibility space.

Note that E2 badly fails to be a visibility space: only antipodes on the boundary are connected by a
geodesic line. If we tried to mimic the construction from the last paragraph for non-antipodal boundary
points, we’d find that the slope of the connecting segment depended completely on the sequences of
endpoints chosen on the rays.

8.5. Contracting boundary. Some of the characterizations of hyperbolicity we have seen above were
that all geodesics are contracting and stable. That is part of what gives the visual boundary such nice
properties. Recall that even in a non-hyperbolic space, some rays may possess this contraction property.
For instance, Minsky shows that in Teichmüller space, geodesics that stay in the so-called thick part are
contracting. It is understood which kinds of geodesics in RAAGs are contracting, based on the amount
of time that they spend in flats.

Recent work of Charney and Sultan defines a boundary for more general spaces by just considering
classes of contracting rays. This does successfully produce a QI-invariant boundary for larger classes of
groups: CAT(0), so far.

8.6. Horofunctions. The simplest and most natural description of the horofunction boundary is this:
we want to build a bordification directly from the distance function. We note that distance gives a map
from X to the function space CpXq via x ÞÑ fx :“ dpx, ¨q. But this won’t give any nice limiting behavior
as x goes to infinity in X because for any fixed y the fxpyq will diverge, so the fx don’t converge to a
nice function. We fix this by a normalization:

Fx :“ dpx, ¨q ´ dpx, x0q, so that Ftxnupyq “ lim
nÑ8

dpxn, yq ´ dpxn, x0q

may possibly converge to a function for an appropriate sequence of points xn.
In particular, consider xn exiting to infinity along a geodesic ray. Then xny and xnx0 are two

sides of a geodesic triangle whose third side is yx0; if the sidelengths of a triangle are a, b, c, then
b ` c ě a ùñ b ´ a ě ´c, so Fxnpyq ě ´dpx0, yq. Also, the difference Fxn`1

pyq ´ Fxnpyq is equal to
dpxn`1, yq ´ dpxn`1, xnq ´ dpxn, yq, and the triangle inequality again ensures that this is nonpositive, so
the sequence of numbers Fxnpyq is non-increasing and bounded below, and thus converges!

Example, which you should check: if txnu goes up along the y–axis in E2, then the associated
horofunction evaluates at y “ pp, qq as F pyq “ ´q. Thus its level sets are horizontal lines.

So if we let ι : X Ñ CpXq be given by this ιpxq “ Fx, we can let the horofunction bordification be
its closure, and the horofunction boundary BhpXq be all new limit points (horofunctions) obtained in
this process. The functions induced by geodesic rays are called Busemann functions, but there can
be others. For proper metric spaces this is always a compactification.

For CAT(0) spaces, Busemann functions are the only horofunctions, and there is a nice Busemann
map B8 Ñ Bh that is a homeomorphism. In general, there can certainly be Busemann functions that
are not horofunctions, even in δ–hyperbolic spaces.

Horocycles are defined to be level sets of horofunctions, and horoballs are sub-level sets. This
recovers the usual definitions of horoballs and horocycles in the hyperbolic plane: balls and disks tangent
to the boundary.

8.7. Good boundaries for groups? These are useful constructions, but they have some issues. The
visual boundary need not even be a bordification if G is not hyperbolic: in particular, you’ll show in
the exercises that B8Z2 is an uncountable set with the trivial topology, meaning that undistorted flat
subgroups produce useless, horribly-non-Hausdorff visual boundaries. The horofunction boundary isn’t
QI invariant and indeed for Cayley graphs it depends heavily on the choice of generating set.

Neumann and Shapiro posed a question in one of their papers. Find a notion of boundary for finitely
generated groups that meets just three desiderata: intrinsic to the group itself; the boundary of a free
group is a Cantor set; the boundary of Zd is a sphere. There is no known construction that works.
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9. Dynamics

9.1. Quasi-axes and classification of isometries. Recall the classification of isometries of H: in the
hyperbolic case, there was a geodesic axis, and the action of g pushed points along that axis from a
global repelling point on the boundary to a global attracting point. It will turn out that in hyperbolic
groups, all infinite order elements behave roughly this way: they have a quasigeodesic serving as an axis.

Proposition 13. For any infinite-order element g in a hyperbolic groupG there is a pK,Cq–quasigeodesic
that is g–invariant. (K,C depending only on δ.)

Note that g can’t fix a point, because gh “ h ùñ g “ e. Choose some vertex h of the Cayley graph
for which dph, ghq is minimal, which is possible since it takes integer values. Let d “ dph, ghq; if d ě 8δ,
then let γ be the concatenation of the g–images of a geodesic from h to gh. By construction, this is an
8δ–local geodesic, so it is quasigeodesic.

Now suppose some point is moved by less than 8δ. Since g has infinite order, its orbits can’t remain
in any bounded set, so suppose dph, gnhq ą m, where n and m are large. Then one can find a point h1

on the geodesic from h to gnh such that connecting the powers gkh1 by geodesic segments produces a
quasigeodesic. (Proof omitted: try it.)

We will call this invariant quasigeodesic a quasi-axis for g. Note that it is asymptotic to a pair
of points on the boundary, and by visibility there is also a geodesic between those points. So one can
choose between a quasi-geodesic that is g–invariant and a true geodesic that is nearly g–invariant.

Proposition 14. Any two quasi-axes for g are bounded distance apart (for a bound depending on δ).

Proof. Consider two quasi-axes, and let d be the minimum distance from a point on α to a point on β.
Then the Hausdorff distance between the axes is at most d` 2C, where the points gnp are C–dense on
the axes. Now consider very distant points s, t on α and their closest points s1, t1 on β. The geodesic
quadrilateral on s, s1, t1, t is 2δ–thin, and it is easy to see that most of the long sides must be 2δ–close to
each other. But α, β, are quasigeodesic, so are close to the true geodesics between any of their points. �

It’s too much to hope for quasi-axes without hyperbolicity, but you can generalize the idea somewhat
by defining an asymptotic translation length: for any metric space and any isometry, set τpgq :“

limnÑ8
dpp,gnpq

n . (It follows from the triangle inequality that this exists and is independent of p.)
Gromov observed that in hyperbolic groups, the translation lengths are discrete; indeed, there is an

N depending on δ so that all τpgq are in 1
NZ. A simple example of non-integer translation lengths is

given by taking Z with the non-standard generating set ˘t1, Nu. Then dp0, nq « n{N for large n, so

τp1q “ lim n{N
n “ 1

N . Similarly, τpjq “ |j|
N . Thanks to Chris Leininger for this example.

Proposition 15. Hyperbolic groups have no subgroups isomorphic to Z2.

Very loosely, the reason is that if rg, hs “ 1, then h permutes the quasi-axes of g, so it nearly fixes
a quasi-axis, so it nearly behaves like gn. One can make this precise to see that the centralizer Cpgq is
virtually xgy.

This is very strong! Note that hyperbolic groups can certainly have non-hyperbolic subgroups, if they
are embedded in a very distance-distorting way. However, Z2 is a forbidden subgroup, no matter how
embedded.

What about the converse? Moussong proved that a Coxeter group is hyperbolic iff it contains no Z2

subgroup.
The Bestvina-Bridson wager asks if the same is true for fundamental groups of compact nonposi-

tively curved manifolds. (Note: this is now established in dimension three, by geometrization, but open
in higher dimension.)

So we have found that the action of a non-torsion element on the group has North-South dynamics:
a quasi-axis connecting a repelling to an attracting fixed point on the boundary.

The three-fold classification of isometries of H has also been exported to the non-hyperbolic setting.
For instance, consider the mapping class group of a surface: the discrete group of (orientation-
preserving) diffeomorphisms, up to isotopy. (It turns out to be finitely presented.) This has a nice
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isometric action on a topological ball called the Teichmüller space. Then there is a classic theorem of
Thurston’s: any mapping class is either finite-order (corresponding to elliptic case), reducible (corre-
sponding to parabolic case), or has a quasi-axis and North-South dynamics. This last kind is called
pseudo-Anosov. These are classified by their fixed points on an appropriate boundary sphere.

Question (de la Harpe): Can SL3pZq act on anything with N-S dynamics?

9.2. Applications of N-S dynamics. One important application is ping pong lemmas: having N-S
dynamics allows you to find free subgroups of your isometry group. The classic case is again in the
hyperbolic plane. One takes two different hyperbolic isometries, such that the boundary fixed points
α`, α´, β`, β´ are all distinct. Then, by passing to high enough powers, there are neighborhoods
A`, A´, B`, B´ such that one isometry takes everything outside A´ into A` and the other takes ev-
erything outside B´ into B`. Once you’re in this setting, it’s easy to see that any nontrivial string in
these isometries a and b can’t equal the identity: it either ends in a or b, so it either maps the whole
space into A` or B`. Thus xa, by is a free subgroup of isometries.

9.3. Ray approximation. The important Multiplicative Ergodic Theorem says that for a random
walk on a symmetric space with finite first moment, there is a value A (called the first Lyapunov
exponent) such that for almost every sample path ω P Ω, limnÑ8

1
ndpx0, gnx0q “ A; if A ą 0 (such

random walks are called ballistic), then for a.e. ω there is a geodesic ray γ with

lim
nÑ8

1

n
dpgnx0, γpAnqq “ 0

for gn “ gpωqgpTωq ¨ ¨ ¨ gpTn´1ωq, the product of random group elements. This says that for this domi-
nant speed A, almost every sequence of points in the random walk has some geodesic ray such that the
points, though they may seem to be scattered all about, actually are sublinearly well-approximated by
steady progress along γ with speed A. Let us call this geodesic tracking or ray approximation. (See
figure below.) This was initially proved for the GLnpRq case by Oseledets in the 1960s, then interpreted
geometrically and extended to general symmetric spaces by Kaimanovich.

Kaimanovich extends this to random walks on hyperbolic groups. Karlsson-Margulis extend to non-
positive curvature. And it works as well for the mapping class group action on Teichmüller space (Duchin,
Tiozzo).

9.4. Ergodic theorem for isometries. Here is a massively more general setup that should be thought
of as similar in flavor. Even when your random walk isn’t following a geodesic, it is regularly traversing
the level sets of some horofunction.

Theorem 16 (Karlsson-Ledrappier). Let G be a locally compact group acting by isometries on a proper
space X, and consider a random walk with finite first moment. Then for almost every sample path ω P Ω,
there is some horofunction hω such that

lim
nÑ8

1

n
dpx0, gnx0q “ ´ lim

nÑ8

1

n
hωpgnx0q.

Here’s how you should think about this: in the ray approximation scenario above, the points of the
random walk were falling sublinearly close to a geodesic ray, so there was a point on the visual boundary
towards which they were making steady progress. This theorem says that even if you’re in a metric
space with a terrible visual boundary, there is still some point in the horofunction boundary towards
which you are making steady progress.
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10. More randomness

10.1. Random group elements. Let us define various notions of the asymptotic density of a prop-
erty P , associated to corresponding ways to pick out a random element of a group.

Given pG,Sq, suppose G acts on X and identify G with its orbit. Identify property P with a subset
of G (for instance, P could be “finite-order,” and then that subset would contain the torsion elements).
Define

ProbpP q :“ lim
nÑ8

#pBSn X P q

#BSn
; GProbpP q :“ lim

nÑ8

#pBallXn X P q

#pBallXn XGq
.

At least a priori (and usually in fact), Prob depends on the genset S and GProb depends on X. A
third way to randomly pick group elements, rather than uniformly in balls in the Cayley graph or model
space, is via random walks. We can let RProbpP q :“ lim

nÑ8
Ppgn P P q, measuring the probability that the

nth sample point in the random walk has property P .
The literature contains many beautiful theorems about RProb. For actions that are well-understood,

there are also results on GProb. There are many results on Prob for free groups, where it is not that
different from RProb, but fairly few other than that. This is because for complicated groups it is very
hard to build up the Cayley graphs finely enough to solve these counting problems.

For instance, it has long been suspected that in the Thurston classification of mapping classes, “almost
every mapping class is pseudo-Anosov.” (This is corroborated by experimental evidence of Dunfield and
D. Thurston, which shows that with respect to a finite set of Dehn twist generators, it typically only
takes a product of about length three before you can expect to see a pseudo-Anosov!) The genericity
of pseudo-Anosovs is now a theorem of Maher for RProb; it is established by Maher and by Masur for
GProb with respect to the action on Teichmüller space; and it is still wide open for Prob.

10.2. Nilpotent groups and limit metrics. An exception to the rule that Prob is too hard to work
with is in nilpotent groups. For example, a theorem of P. Dani states that in virtually nilpotent groups,
Probptorsionq is independent of S and ranges over all of QX r0, 1q as the group varies!

A major tool for asymptotic density results in nilpotent groups is found in work of Pansu, which says
that the large-scale structure of the discrete group is the same as a certain metric on an ambient Lie
group. Thus for appropriately homogeneous properties P , Prob in the discrete group agrees with GProb
in that Lie group with respect to the limit metric.

A special case where things work out particularly nicely is for free abelian groups Zd. In that case, if
S is the (symmetric) generating set, then we can let Q be its convex hull in Rd and let L be its boundary.
Then one can show that there is a constant K depending on S so that pn´KqQXZd Ď Bn Ď nQXZd.
In other words, the ball of radius n is very nearly the same as the set of lattice points in the polytope
nQ. So we can see a limit shape emerging: if we take dilates 1

nBn, they converge to the polytope Q,

and accordingly the word metric is well-approximated by the norm on Rd for which Q is the unit ball.
Furthermore, this also ensures that the counting measure on 1

nBn converges to the volume measure on
Q. Therefore if P itself is a property that behaves well under rescaling, we find that Prob in the group
is just GProb in the normed space. In fact, these probabilities will depend just on the limit shape Q.
Small example to illustrate the point: in pZ2, Sq, the probability that a group element has a geodesic
spelling using exactly two generators equals r{2A, where r is the number of sides of the polygon Q and
A is its area!

10.3. Statistical stability of geodesics. In a geodesic space X, with basepoint x0, let Gpxq the set of
all geodesics x0x, where the distance between two geodesics is their Hausdorff distance, which is always

at most dpx, x0q{2. Define an instability function Ipxq :“ 2 ¨ diamGpxqdpx,x0q
, normalized so that 0 ď Ipxq ď 1

for all x. For example, in pZ2, stdq, we have Ipa, 0q “ 0 but Ipa, aq “ 1.
Then let the stability index of a group G with respect to a genset S be

StabpG,Sq :“ lim
εÑ0

Prob
`

Ipxq ď ε
˘

.

This measures the proportion of points for which the distance between possible geodesics from the
basepoint is less than any linear function of their length.
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Theorem 17. With respect to any finite generating set, the density of sublinearly stable points is

StabpG,Sq “

$

’

&

’

%

0, G “ Zd,
p{q, G “ HpZq,
1, G unbounded, δ-hyperbolic.

Here, p{q is a rational number that depends nontrivally on S and can be computed precisely. For
the standard generators, the stability index is 19{31. (It is easy to find generating sets for which the
stability index gets arbitrarily close to 1. Conjecturally, 19/31 is minimal.)

10.4. Random groups. My treatment here follows Ollivier’s survey, but I’ve tried to update the sum-
mary of density results in the following chart to be current with the literature.

Fix an m and consider groups generated by S “ ta1, . . . , amu. Then in the free group Fm, the size
of the `–sphere is S` « p2m ´ 1q`. For any density 0 ď d ď 1, we’ll choose uniformly at random a
subset R Ă S` having exactly p2m´ 1qd` elements. (So if d “ 1{2, we took the square root of the total
possible number.) (Note we could use B` instead of S` and it wouldn’t be much different, since growth
is exponential.)

Then a random group is G “ xa1, . . . , am | Ry for a random relator set R. We can now talk about
statistical properties of random groups by letting `Ñ8.

Proposition 18. Let R be a random set of relators at density d, at length `. Fix 0 ď α ă d. Then
with probability 1, every reduced word of length α` appears as a subword of some word in R.

This relates in a nice way to the small cancellation conditions that have been studied in combina-
torial group theory for a very long time: fix 0 ď α ď 1 and for a presentation xS|Ry, replace R with its
closure under cyclic rewriting. For every pair of relators, let uij be the maximal initial string on which
they agree; call these the pieces of the presentation. Then the presentation is C 1pαq if all pieces are less
than α proportion of the relators in which they appear. Then it is a classical result that C 1p1{6q implies
that the given presentation is a Dehn presentation, which as we have seen means that G is hyperbolic. So
the proposition and a bit more work shows that at density 1{12 or less, the group should be hyperbolic.
But in fact one can do better.

Proposition 19 (Probabilistic pigeon-hole principle). For any ε ą 0, if N
1
2`ε balls are randomly put

into N boxes, then there is almost sure to be a box with at least two balls, as N Ñ8.

This makes it almost sure that we have two of the same relator, and similarly almost sure that we have
a relator and another differing from it in one place. If r1 “ wa1 and r2 “ wa2 are both relators, then
a1 “ a2. Eventually, this will cause all generators to be identified which each other and their inverses,
so G is trivial or Z{2Z.

Theorem 20 (Gromov). For random groups with d ą 1{2, almost surely G “ 1 or Z{2Z. For random
groups with d ă 1{2, almost surely G is (infinite) torsion-free hyperbolic, of geometric dimension 2.

The geometric dimension is the smallest dimension of a KpG, 1q complex, so in particular these
random groups are not elementary (virtually Z). And now a great deal more is known about these
random groups at density ă 1{2, such as results about their growth rates, spectral gaps, boundaries,
subgroups, and so on. There is even a bound on the hyperbolicity constant: δ ď 4`{p1´ 2dq in the thin
triangles definition.

Right now the most mysterious density range is 1{5 ă d ă 1{3, where there is a conspicuous gap in
understanding how G can act. (See below.) Another question of some interest is to characterize what
happens at d “ 1{2. Here there is more sensitive dependence on features of the model such as the
choice of m (the number of generators) and whether relators are selected from S` or B`, neither of which
matters at other densities. For instance, the probability that G “ 1 at density 1{2 is strictly between
0 and 1 and depends on m, which is unpleasant. To make this situation nicer one can “tune” d Ñ 1{2
with ` Ñ 8 and try to find interesting limiting properties. There is still a lot to do in the study of
random groups....
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Density diagram
Almost sure properties of random groups at densities 0 ď d ď 1.

0 1
1
2

1
3

1
5

1
6

1
12

1
16

torsion-free hyperbolic; B8 a Menger curve; growth rate arb. close to free; contains surface subgroups 1 or Z{2Z

not Property (T) Property (T)

C 1p1{6q not C 1p1{6q

presentation is Dehn presentation not Dehn

Cayley graph not planar

acts freely, cocompactly on CAT(0) cube complex

acts essentially on CAT(0) cube complex

any action on CAT(0) cube complex has global fixed point

(Attributions: some combinations of Gromov, Ollivier, Wise, Żuk, Calegari, Walker, Arzhantseva, Cherix, Przytyczki, Dahmani, Guirardel...)


