INTRODUCTION TO NILPOTENT GROUPS

Moon Duchin

.

$$a = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad b = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}, \quad c = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

$$\left\{ \begin{pmatrix} 1 & * & * \\ 0 & 1 & * \\ 0 & 0 & 1 \end{pmatrix} \right\}.$$

► the Heisenberg group: $H(\mathbb{Z}) \leq H(\mathbb{R})$

$$a=\left(egin{smallmatrix}1&1&0\0&1&0\0&0&1\end{smallmatrix}
ight),\quad b=\left(egin{smallmatrix}1&0&0\0&1&1\0&0&1\end{smallmatrix}
ight),\quad c=\left(egin{smallmatrix}1&0&1\0&1&0\0&0&1\end{smallmatrix}
ight).$$

$$\left\{ \begin{pmatrix} 1 & * & * \\ 0 & 1 & * \\ 0 & 0 & 1 \end{pmatrix} \right\}.$$

commutator: [g,h] = ghg⁻¹h⁻¹ — measures the failure to commute. Write nested commutators [g,h,j,k] = [[[g,h],j],k], etc.

a

$$= egin{pmatrix} 1 & 1 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{pmatrix}, \quad b = egin{pmatrix} 1 & 0 & 0 \ 0 & 1 & 1 \ 0 & 0 & 1 \end{pmatrix}, \quad c = egin{pmatrix} 1 & 0 & 1 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{pmatrix}.$$

$$\left\{ \begin{pmatrix} 1 & * & * \\ 0 & 1 & * \\ 0 & 0 & 1 \end{pmatrix} \right\}.$$

- commutator: [g,h] = ghg⁻¹h⁻¹ measures the failure to commute. Write nested commutators [g,h,j,k] = [[[g,h],j],k], etc.
- ► In *H*, one checks that [a,b]=c, and $[a^n,b^m]=c^{nm}$.

$$a = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad b = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}, \quad c = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

$$\left\{ \begin{pmatrix} 1 & * & * \\ 0 & 1 & * \\ 0 & 0 & 1 \end{pmatrix} \right\}.$$

- commutator: [g,h] = ghg⁻¹h⁻¹ measures the failure to commute. Write nested commutators [g,h,j,k] = [[[g,h],j],k], etc.
- ► In *H*, one checks that [a,b]=c, and $[a^n,b^m]=c^{nm}$.
- ► Generalization: a closed path in *ab* plane equals c^A (signed area).

a

$$= egin{pmatrix} 1 & 1 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{pmatrix}, \quad b = egin{pmatrix} 1 & 0 & 0 \ 0 & 1 & 1 \ 0 & 0 & 1 \end{pmatrix}, \quad c = egin{pmatrix} 1 & 0 & 1 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{pmatrix}.$$

$$\left\{ \begin{pmatrix} 1 & * & * \\ 0 & 1 & * \\ 0 & 0 & 1 \end{pmatrix} \right\}.$$

- commutator: [g,h] = ghg⁻¹h⁻¹ measures the failure to commute. Write nested commutators [g,h,j,k] = [[[g,h],j],k], etc.
- ► In *H*, one checks that [a,b]=c, and $[a^n,b^m]=c^{nm}$.
- ► Generalization: a closed path in *ab* plane equals c^A (signed area).
- The letter c is central, so [g,h,k]=1 for any group elements. (This is called 2-step nilpotency.)

a

$$= egin{pmatrix} 1 & 1 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{pmatrix}, \quad b = egin{pmatrix} 1 & 0 & 0 \ 0 & 1 & 1 \ 0 & 0 & 1 \end{pmatrix}, \quad c = egin{pmatrix} 1 & 0 & 1 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{pmatrix}.$$

$$\left\{ \begin{pmatrix} 1 & * & * \\ 0 & 1 & * \\ 0 & 0 & 1 \end{pmatrix} \right\}.$$

- commutator: [g,h] = ghg⁻¹h⁻¹ measures the failure to commute. Write nested commutators [g,h,j,k] = [[[g,h],j],k], etc.
- ► In *H*, one checks that [a,b]=c, and $[a^n,b^m]=c^{nm}$.
- ► Generalization: a closed path in *ab* plane equals c^A (signed area).
- The letter c is central, so [g,h,k]=1 for any group elements. (This is called 2-step nilpotency.)
- ► ≤ s-step nilpotent \iff (s+1)-fold commutators are killed

.

► Generally, nilpotent means LCS gets to {1} in s steps

.

► Generally, nilpotent means LCS gets to {1} in s steps

 $\{1\} = G_{s+1} \triangleleft \ldots \triangleleft G_3 \triangleleft G_2 \triangleleft G_1 = G.$

.

.

► Generally, nilpotent means LCS gets to {1} in s steps

$$\{1\} = G_{s+1} \triangleleft \ldots \triangleleft G_3 \triangleleft G_2 \triangleleft G_1 = G.$$
$$G_{k+1} = [G_k, G]$$

► Generally, nilpotent means LCS gets to {1} in s steps

$$\{1\} = G_{s+1} \triangleleft \ldots \triangleleft G_3 \triangleleft G_2 \triangleleft G_1 = G.$$
$$G_{k+1} = [G_k, G]$$

► Other examples: higher Heis H_{2k+1} ; free nilpotent groups $N_{s,m}$

► Generally, nilpotent means LCS gets to {1} in s steps

$$[1] = G_{s+1} \triangleleft \ldots \triangleleft G_3 \triangleleft G_2 \triangleleft G_1 = G.$$
$$G_{k+1} = [G_k, G]$$

> Other examples: higher Heis H_{2k+1} ; free nilpotent groups $N_{s,m}$

$$H_7 = \begin{pmatrix} 1 \ \mathbb{Z} \ \mathbb{Z} \ \mathbb{Z} \ \mathbb{Z} \ \mathbb{Z} \\ 0 \ 1 \ 0 \ 0 \ \mathbb{Z} \\ 0 \ 0 \ 1 \ 0 \ \mathbb{Z} \\ 0 \ 0 \ 0 \ 1 \ \mathbb{Z} \\ 0 \ 0 \ 0 \ 1 \ \mathbb{Z} \\ \end{pmatrix}$$

► Generally, nilpotent means LCS gets to {1} in s steps

$$[1] = G_{s+1} \triangleleft \ldots \triangleleft G_3 \triangleleft G_2 \triangleleft G_1 = G.$$
$$G_{k+1} = [G_k, G]$$

► Other examples: higher Heis H_{2k+1} ; free nilpotent groups $N_{s,m}$

► Generally, nilpotent means LCS gets to {1} in s steps

$$\{1\} = G_{s+1} \triangleleft \ldots \triangleleft G_3 \triangleleft G_2 \triangleleft G_1 = G.$$
$$G_{k+1} = [G_k, G]$$

► Other examples: higher Heis H_{2k+1} ; free nilpotent groups $N_{s,m}$

$$H_{7} = \begin{pmatrix} 1 \ \mathbb{Z} \ \mathbb{Z} \ \mathbb{Z} \ \mathbb{Z} \ \mathbb{Z} \\ 0 \ 1 \ 0 \ 0 \ \mathbb{Z} \\ 0 \ 0 \ 1 \ 0 \ \mathbb{Z} \\ 0 \ 0 \ 0 \ 1 \ \mathbb{Z} \\ 0 \ 0 \ 0 \ 0 \ 1 \ \mathbb{Z} \\ 0 \ 0 \ 0 \ 0 \ 1 \ \mathbb{Z} \\ 0 \ 0 \ 0 \ 0 \ 1 \ \mathbb{Z} \\ \end{pmatrix} \qquad (a_{1}, \dots, a_{m} \mid [a_{i_{1}}, \dots a_{i_{s+1}}] \text{ for all } i_{j} \rangle$$

➤ The unitriangular groups UT_N(Z) are nilpotent because addition is additive on the first nonzero superdiagonal, so taking nested commutators will terminate in at most N-1 steps

► Generally, nilpotent means LCS gets to {1} in s steps

$$\{1\} = G_{s+1} \triangleleft \ldots \triangleleft G_3 \triangleleft G_2 \triangleleft G_1 = G.$$
$$G_{k+1} = [G_k, G]$$

► Other examples: higher Heis H_{2k+1} ; free nilpotent groups $N_{s,m}$

$$H_{7} = \begin{pmatrix} 1 \ \mathbb{Z} \ \mathbb{Z} \ \mathbb{Z} \ \mathbb{Z} \ \mathbb{Z} \\ 0 \ 1 \ 0 \ 0 \ \mathbb{Z} \\ 0 \ 0 \ 1 \ 0 \ \mathbb{Z} \\ 0 \ 0 \ 0 \ 1 \ \mathbb{Z} \\ 0 \ 0 \ 0 \ 0 \ 1 \ \mathbb{Z} \\ 0 \ 0 \ 0 \ 0 \ 1 \ \mathbb{Z} \\ 0 \ 0 \ 0 \ 0 \ 1 \ \mathbb{Z} \\ \end{pmatrix} \qquad (a_{1}, \dots, a_{m} \mid [a_{i_{1}}, \dots a_{i_{s+1}}] \text{ for all } i_{j} \rangle$$

- ➤ The unitriangular groups UT_N(Z) are nilpotent because addition is additive on the first nonzero superdiagonal, so taking nested commutators will terminate in at most N-1 steps
- ► conversely: every fin-gen torsion-free nilpotent group embeds in some $UT_N(\mathbb{Z})$

► Generally, nilpotent means LCS gets to {1} in s steps

$$\{1\} = G_{s+1} \triangleleft \ldots \triangleleft G_3 \triangleleft G_2 \triangleleft G_1 = G.$$
$$G_{k+1} = [G_k, G]$$

► Other examples: higher Heis H_{2k+1} ; free nilpotent groups $N_{s,m}$

$$H_{7} = \begin{pmatrix} 1 \ \mathbb{Z} \ \mathbb{Z} \ \mathbb{Z} \ \mathbb{Z} \ \mathbb{Z} \\ 0 \ 1 \ 0 \ 0 \ \mathbb{Z} \\ 0 \ 0 \ 1 \ 0 \ \mathbb{Z} \\ 0 \ 0 \ 0 \ 1 \ \mathbb{Z} \\ 0 \ 0 \ 0 \ 0 \ 1 \ \mathbb{Z} \\ 0 \ 0 \ 0 \ 0 \ 1 \ \mathbb{Z} \\ 0 \ 0 \ 0 \ 0 \ 1 \ \mathbb{Z} \\ \end{pmatrix} \qquad (a_{1}, \dots, a_{m} \mid [a_{i_{1}}, \dots a_{i_{s+1}}] \text{ for all } i_{j} \rangle$$

- ➤ The unitriangular groups UT_N(Z) are nilpotent because addition is additive on the first nonzero superdiagonal, so taking nested commutators will terminate in at most N-1 steps
- ► conversely: every fin-gen torsion-free nilpotent group embeds in some $UT_N(\mathbb{Z})$
- This goes through a Lie group fact: every simply connected nilpotent group is isomorphic to a Lie subgroup of some $UT_N(\mathbb{R})$

► Generally, nilpotent means LCS gets to {1} in s steps

$$\{1\} = G_{s+1} \triangleleft \ldots \triangleleft G_3 \triangleleft G_2 \triangleleft G_1 = G.$$
$$G_{k+1} = [G_k, G]$$

► Other examples: higher Heis H_{2k+1} ; free nilpotent groups $N_{s,m}$

$$H_{7} = \begin{pmatrix} 1 & \mathbb{Z} & \mathbb{Z} & \mathbb{Z} & \mathbb{Z} \\ 0 & 1 & 0 & 0 & \mathbb{Z} \\ 0 & 0 & 1 & 0 & \mathbb{Z} \\ 0 & 0 & 0 & 1 & \mathbb{Z} \\ 0 & 0 & 0 & 0 & 1 & \mathbb{Z} \\ 0 & 0 & 0 & 0 & 1 & \mathbb{Z} \end{pmatrix}$$

- ➤ The unitriangular groups UT_N(Z) are nilpotent because addition is additive on the first nonzero superdiagonal, so taking nested commutators will terminate in at most N-1 steps
- ► conversely: every fin-gen torsion-free nilpotent group embeds in some $UT_N(\mathbb{Z})$
- This goes through a Lie group fact: every simply connected nilpotent group is isomorphic to a Lie subgroup of some $UT_N(\mathbb{R})$

(proved by embedding the Lie algebra into strictly upper $\triangle s$)

$$(x,y,z) \leftrightarrow \begin{pmatrix} 1 \ x \ z + \frac{1}{2} xy \\ 0 \ 1 \ y \\ 0 \ 0 \ 1 \end{pmatrix}$$

$$(x,y,z) \leftrightarrow \begin{pmatrix} 1 \ x \ z + \frac{1}{2} xy \\ 0 \ 1 \ y \\ 0 \ 0 \ 1 \end{pmatrix}$$

$$(x,y,z)\cdot(x',y',z')=(x+x',\ y+y',\ z+z'+\frac{xy'-yx'}{2}).$$

$$(x,y,z) \leftrightarrow \begin{pmatrix} 1 \ x \ z + \frac{1}{2} xy \\ 0 \ 1 \ y \\ 0 \ 0 \ 1 \end{pmatrix}$$

$$(x, y, z) \cdot (x', y', z') = (x + x', y + y', z + z' + \frac{xy' - yx'}{2}).$$

linear linear

$$(x,y,z) \leftrightarrow \begin{pmatrix} 1 \ x \ z + \frac{1}{2} xy \\ 0 \ 1 \ y \\ 0 \ 0 \ 1 \end{pmatrix}$$

$$(x,y,z) \cdot (x',y',z') = (x+x', y+y', z+z'+rac{xy'-yx'}{2}).$$

linear linear quadratic

Multiple ways to coordinatize. (a) matrix entries; (b) normal form a^Ab^Bc^C; (c) exponential coordinates

$$(x,y,z) \leftrightarrow \begin{pmatrix} 1 \ x \ z + \frac{1}{2} xy \\ 0 \ 1 \ y \\ 0 \ 0 \ 1 \end{pmatrix}$$

$$(x,y,z) \cdot (x',y',z') = (x+x', y+y', z+z' + \frac{xy'-yx'}{2}).$$

linear linear quadratic

Theorem (deKimpe 2013): if \mathbb{Z}^n or \mathbb{R}^n has a group structure in which multiplication is polynomial, then it is a **nilpotent group**.

Multiple ways to coordinatize. (a) matrix entries; (b) normal form a^Ab^Bc^C; (c) exponential coordinates

$$(x,y,z) \leftrightarrow \begin{pmatrix} 1 \ x \ z + \frac{1}{2} xy \\ 0 \ 1 \ y \\ 0 \ 0 \ 1 \end{pmatrix}$$

$$(x,y,z) \cdot (x',y',z') = (x+x', y+y', z+z' + \frac{xy'-yx'}{2}).$$

linear linear quadratic

Theorem (deKimpe 2013): if \mathbb{Z}^n or \mathbb{R}^n has a group structure in which multiplication is polynomial, then it is a **nilpotent group**.

Multiple ways to coordinatize. (a) matrix entries; (b) normal form a^Ab^Bc^C; (c) exponential coordinates

$$(x, y, z) \leftrightarrow \begin{pmatrix} 1 & x & z + \frac{1}{2}xy \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix}$$

$$(x, y, z) \cdot (x', y', z') = (x + x', y + y', z + z' + \frac{xy' - yx'}{2}).$$

$$(x, y, z) \cdot (x', y', z') = (x + x', y + y', z + z' + \frac{xy' - yx'}{2}).$$

$$(x, y, z) \cdot (x', y', z') = (x + x', y + y', z + z' + \frac{xy' - yx'}{2}).$$

Theorem (deKimpe 2013): if \mathbb{Z}^n or \mathbb{R}^n has a group structure in which multiplication is polynomial, then it is a **nilpotent group**.

► exponential coordinates on $H(\mathbb{R})$ let us plot in \mathbb{R}^3 :

► exponential coordinates on $H(\mathbb{R})$ let us plot in \mathbb{R}^3 :

$$(x,y,z) \leftrightarrow \begin{pmatrix} 1 \ x \ z + \frac{1}{2} xy \\ 0 \ 1 \ y \\ 0 \ 0 \ 1 \end{pmatrix}$$

► exponential coordinates on $H(\mathbb{R})$ let us plot in \mathbb{R}^3 :

$$(x,y,z) \leftrightarrow \begin{pmatrix} 1 & x & z + \frac{1}{2}xy \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} \qquad (x,y,z)^n = (nx,ny,nz).$$

► exponential coordinates on $H(\mathbb{R})$ let us plot in \mathbb{R}^3 :

$$(x,y,z) \leftrightarrow \begin{pmatrix} 1 & x & z + \frac{1}{2}xy \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} \qquad (x,y,z)^n = (nx,ny,nz).$$

 "horizontal" plane in Lie algebra can be "pushed around" by left multiplication to get a plane field (subbundle of *TH*)

► exponential coordinates on $H(\mathbb{R})$ let us plot in \mathbb{R}^3 :

$$(x,y,z) \leftrightarrow \begin{pmatrix} 1 & x & z + \frac{1}{2}xy \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} \qquad (x,y,z)^n = (nx,ny,nz).$$

 "horizontal" plane in Lie algebra can be "pushed around" by left multiplication to get a plane field (subbundle of *TH*)

$$X_{0} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, Y_{0} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

► exponential coordinates on $H(\mathbb{R})$ let us plot in \mathbb{R}^3 :

$$(x,y,z) \leftrightarrow \begin{pmatrix} 1 & x & z + \frac{1}{2}xy \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} \qquad (x,y,z)^n = (nx,ny,nz).$$

 "horizontal" plane in Lie algebra can be "pushed around" by left multiplication to get a plane field (subbundle of *TH*)

$$X_{0} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, Y_{0} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

Say a curve $\gamma = (\gamma_1, \gamma_2, \gamma_3)$ is *admissible* if its tangent vectors are horizontal, i.e., $\gamma_3' = \frac{1}{2}(\gamma_1 \gamma_2' - \gamma_2 \gamma_1')$.

- Say a curve $\gamma = (\gamma_1, \gamma_2, \gamma_3)$ is *admissible* if its tangent vectors are horizontal, i.e., $\gamma_3' = \frac{1}{2}(\gamma_1 \gamma_2' \gamma_2 \gamma_1')$.
- ► Fact 1: Any two points in *H* connected by an admissible path.

- Say a curve $\gamma = (\gamma_1, \gamma_2, \gamma_3)$ is *admissible* if its tangent vectors are horizontal, i.e., $\gamma_3' = \frac{1}{2}(\gamma_1 \gamma_2' \gamma_2 \gamma_1')$.
- ► Fact 1: Any two points in *H* connected by an admissible path.
- ► Fact 2: Any plane curve $\gamma = (\gamma_1, \gamma_2)$ lifts uniquely to an admissible path. Third coordinate is **area**.

- Say a curve $\gamma = (\gamma_1, \gamma_2, \gamma_3)$ is *admissible* if its tangent vectors are horizontal, i.e., $\gamma_3' = \frac{1}{2}(\gamma_1 \gamma_2' \gamma_2 \gamma_1')$.
- ► Fact 1: Any two points in *H* connected by an admissible path.
- ► Fact 2: Any plane curve $\gamma = (\gamma_1, \gamma_2)$ lifts uniquely to an admissible path. Third coordinate is **area**.

- Say a curve $\gamma = (\gamma_1, \gamma_2, \gamma_3)$ is *admissible* if its tangent vectors are horizontal, i.e., $\gamma_3' = \frac{1}{2}(\gamma_1 \gamma_2' \gamma_2 \gamma_1')$.
- ► Fact 1: Any two points in *H* connected by an admissible path.
- ► Fact 2: Any plane curve $\gamma = (\gamma_1, \gamma_2)$ lifts uniquely to an admissible path. Third coordinate is **area**.

- Say a curve $\gamma = (\gamma_1, \gamma_2, \gamma_3)$ is *admissible* if its tangent vectors are horizontal, i.e., $\gamma_3' = \frac{1}{2}(\gamma_1 \gamma_2' \gamma_2 \gamma_1')$.
- ► Fact 1: Any two points in *H* connected by an admissible path.
- ► Fact 2: Any plane curve $\gamma = (\gamma_1, \gamma_2)$ lifts uniquely to an admissible path. Third coordinate is **area**.

► Proof: Stokes!

- Say a curve $\gamma = (\gamma_1, \gamma_2, \gamma_3)$ is *admissible* if its tangent vectors are horizontal, i.e., $\gamma_3' = \frac{1}{2}(\gamma_1 \gamma_2' \gamma_2 \gamma_1')$.
- ► Fact 1: Any two points in *H* connected by an admissible path.
- ► Fact 2: Any plane curve $\gamma = (\gamma_1, \gamma_2)$ lifts uniquely to an admissible path. Third coordinate is **area**.

 $z = \int_{\partial R} \gamma_1 \gamma'_2 - \gamma_2 \gamma'_1 = \int_R dx \wedge dy = \operatorname{Area}(R).$

.

.

.

So you can norm the horizontal planes however you like and this induces lengths of admissible curves; get a length metric on all of *H*. And actually this works for any Carnot group (nilpotent group with nice grading) if you norm its horizontal subbundle.

- So you can norm the horizontal planes however you like and this induces lengths of admissible curves; get a length metric on all of *H*. And actually this works for any Carnot group (nilpotent group with nice grading) if you norm its horizontal subbundle.
- Lengths and areas of plane curves in a norm completely describe paths in this metric space.

- So you can norm the horizontal planes however you like and this induces lengths of admissible curves; get a length metric on all of *H*. And actually this works for any Carnot group (nilpotent group with nice grading) if you norm its horizontal subbundle.
- Lengths and areas of plane curves in a norm completely describe paths in this metric space.
- ➤ If you choose L², you're doing sub-Riemannian geometry; any other choice is sub-Finsler. (Like L¹ or Hex.)

- So you can norm the horizontal planes however you like and this induces lengths of admissible curves; get a length metric on all of *H*. And actually this works for any Carnot group (nilpotent group with nice grading) if you norm its horizontal subbundle.
- Lengths and areas of plane curves in a norm completely describe paths in this metric space.
- If you choose L², you're doing sub-Riemannian geometry; any other choice is sub-Finsler. (Like L¹ or Hex.)

- So you can norm the horizontal planes however you like and this induces lengths of admissible curves; get a length metric on all of *H*. And actually this works for any Carnot group (nilpotent group with nice grading) if you norm its horizontal subbundle.
- Lengths and areas of plane curves in a norm completely describe paths in this metric space.
- If you choose L², you're doing sub-Riemannian geometry; any other choice is sub-Finsler. (Like L¹ or Hex.)

- So you can norm the horizontal planes however you like and this induces lengths of admissible curves; get a length metric on all of *H*. And actually this works for any Carnot group (nilpotent group with nice grading) if you norm its horizontal subbundle.
- Lengths and areas of plane curves in a norm completely describe paths in this metric space.
- If you choose L², you're doing sub-Riemannian geometry; any other choice is sub-Finsler. (Like L¹ or Hex.)

These metrics admit **dilations** $\delta_t(x,y,z) = (tx,ty,t^2z)$ that scale distance:

 $d(\delta_t p, \delta_t q) = t \cdot d(p, q)$

- So you can norm the horizontal planes however you like and this induces lengths of admissible curves; get a length metric on all of *H*. And actually this works for any Carnot group (nilpotent group with nice grading) if you norm its horizontal subbundle.
- Lengths and areas of plane curves in a norm completely describe paths in this metric space.
- If you choose L², you're doing sub-Riemannian geometry; any other choice is sub-Finsler. (Like L¹ or Hex.)

These metrics admit **dilations** $\delta_t(x,y,z) = (tx,ty,t^2z)$ that scale distance:

 $d(\delta_t p, \delta_t q) = t \cdot d(p, q)$

- So you can norm the horizontal planes however you like and this induces lengths of admissible curves; get a length metric on all of *H*. And actually this works for any Carnot group (nilpotent group with nice grading) if you norm its horizontal subbundle.
- Lengths and areas of plane curves in a norm completely describe paths in this metric space.
- If you choose L², you're doing sub-Riemannian geometry; any other choice is sub-Finsler. (Like L¹ or Hex.)

These metrics admit **dilations** $\delta_t(x,y,z) = (tx,ty,t^2z)$ that scale distance:

 $d(\delta_t p, \delta_t q) = t \cdot d(p, q)$

.

You've got a norm on the *xy* plane. The length of a path in *H* is the norm-length of its shadow in the plane.

.

- You've got a norm on the *xy* plane. The length of a path in *H* is the norm-length of its shadow in the plane.
- ► One way to be geodesic: your shadow is a norm geodesic.

- You've got a norm on the *xy* plane. The length of a path in *H* is the norm-length of its shadow in the plane.
- ► One way to be geodesic: your shadow is a norm geodesic.

- You've got a norm on the *xy* plane. The length of a path in *H* is the norm-length of its shadow in the plane.
- ➤ One way to be geodesic: your shadow is a norm geodesic.

- You've got a norm on the *xy* plane. The length of a path in *H* is the norm-length of its shadow in the plane.
- ► One way to be geodesic: your shadow is a norm geodesic.

- You've got a norm on the *xy* plane. The length of a path in *H* is the norm-length of its shadow in the plane.
- ► One way to be geodesic: your shadow is a norm geodesic.

- You've got a norm on the *xy* plane. The length of a path in *H* is the norm-length of its shadow in the plane.
- ➤ One way to be geodesic: your shadow is a norm geodesic.

- You've got a norm on the *xy* plane. The length of a path in *H* is the norm-length of its shadow in the plane.
- ► One way to be geodesic: your shadow is a norm geodesic.

- You've got a norm on the *xy* plane. The length of a path in *H* is the norm-length of its shadow in the plane.
- ➤ One way to be geodesic: your shadow is a norm geodesic.

- You've got a norm on the *xy* plane. The length of a path in *H* is the norm-length of its shadow in the plane.
- ► One way to be geodesic: your shadow is a norm geodesic.

- You've got a norm on the *xy* plane. The length of a path in *H* is the norm-length of its shadow in the plane.
- ➤ One way to be geodesic: your shadow is a norm geodesic.

- You've got a norm on the *xy* plane. The length of a path in *H* is the norm-length of its shadow in the plane.
- ► One way to be geodesic: your shadow is a norm geodesic.

Isoperimetrix

Indicatrix

- You've got a norm on the *xy* plane. The length of a path in *H* is the norm-length of its shadow in the plane.
- ► One way to be geodesic: your shadow is a norm geodesic.

Isoperimetrix

Indicatrix

- You've got a norm on the *xy* plane. The length of a path in *H* is the norm-length of its shadow in the plane.
- ➤ One way to be geodesic: your shadow is a norm geodesic.

► More generally: $\gamma = (\gamma_1, \gamma_2, \gamma_3)$ as short as possible while connecting, say, (0,0,0) and (A,B,C). That means that $\gamma = (\gamma_1, \gamma_2)$ is shortest from (0,0) to (A,B) enclosing area C.

Indicatrix

Isoperimetrix

Indicatrix

- You've got a norm on the *xy* plane. The length of a path in *H* is the norm-length of its shadow in the plane.
- ► One way to be geodesic: your shadow is a norm geodesic.

► More generally: $\gamma = (\gamma_1, \gamma_2, \gamma_3)$ as short as possible while connecting, say, (0,0,0) and (A,B,C). That means that $\gamma = (\gamma_1, \gamma_2)$ is shortest from (0,0) to (A,B) enclosing area C.

Indicatrix

Isoperimetrix

- You've got a norm on the *xy* plane. The length of a path in *H* is the norm-length of its shadow in the plane.
- ► One way to be geodesic: your shadow is a norm geodesic.

- You've got a norm on the *xy* plane. The length of a path in *H* is the norm-length of its shadow in the plane.
- ➤ One way to be geodesic: your shadow is a norm geodesic.

- You've got a norm on the *xy* plane. The length of a path in *H* is the norm-length of its shadow in the plane.
- ► One way to be geodesic: your shadow is a norm geodesic.

► More generally: $\gamma = (\gamma_1, \gamma_2, \gamma_3)$ as short as possible while connecting, say, (0,0,0) and (A,B,C). That means that $\gamma = (\gamma_1, \gamma_2)$ is shortest from (0,0) to (A,B) enclosing area C.

► Let's call these "beelines" and "area grabbers."

 L² case: isoperimetrix is a circle; beelines are straight horizontal lines; area-grabbers are circular spirals

geodesic

geodesic

unit sphere

 L² case: isoperimetrix is a circle; beelines are straight horizontal lines; area-grabbers are circular spirals

geodesic

unit sphere

 L² case: isoperimetrix is a circle; beelines are straight horizontal lines; area-grabbers are circular spirals

geodesic

unit sphere

 L² case: isoperimetrix is a circle; beelines are straight horizontal lines; area-grabbers are circular spirals

geodesic

unit sphere

 L² case: isoperimetrix is a circle; beelines are straight horizontal lines; area-grabbers are circular spirals

geodesic

unit sphere

 L² case: isoperimetrix is a circle; beelines are straight horizontal lines; area-grabbers are circular spirals

geodesic

unit sphere

 L² case: isoperimetrix is a circle; beelines are straight horizontal lines; area-grabbers are circular spirals

geodesic

unit sphere

L² case: isoperimetrix is a circle;
beelines are straight horizontal
lines; area-grabbers are circular
spirals

geodesic

unit sphere

 L² case: isoperimetrix is a circle; beelines are straight horizontal lines; area-grabbers are circular spirals

geodesic

unit sphere

But in polygonal norms, the beelines can enclose area, and the area-grabbers come in different combinatorial types

24 types of area-grabbers in Hex

But in polygonal norms, the beelines can enclose area, and the area-grabbers come in different combinatorial types

Plot of area enclosed by geodesics gives unit sphere as piecewise-quadratic graph

But in polygonal norms, the beelines can enclose area, and the area-grabbers come in different combinatorial types

Plot of area enclosed by geodesics gives unit sphere as piecewise-quadratic graph There are flat vertical "walls" coming from the beelines (range of areas for same endpoint)

Thurston's eight 3D "model geometries":

.

 \mathbb{R}^3 , S^3 , \mathbb{H}^3 , $S^2 \times \mathbb{R}$, $\mathbb{H}^2 \times \mathbb{R}$, Nil, Sol, and $SL(2,\mathbb{R})$

Thurston's eight 3D "model geometries":

 \mathbb{R}^3 , S^3 , \mathbb{H}^3 , $S^2 \times \mathbb{R}$, $\mathbb{H}^2 \times \mathbb{R}$, Nil, Sol, and $SL(2,\mathbb{R})$

> Nil is $H(\mathbb{R})$ with its sub-Riemannian metric.

Thurston's eight 3D "model geometries":

 \mathbb{R}^3 , S^3 , \mathbb{H}^3 , $S^2 \times \mathbb{R}$, $\mathbb{H}^2 \times \mathbb{R}$, Nil, Sol, and $SL(2,\mathbb{R})$

> Nil is $H(\mathbb{R})$ with its sub-Riemannian metric.

Thurston's eight 3D "model geometries":

 \mathbb{R}^3 , S^3 , \mathbb{H}^3 , $S^2 \times \mathbb{R}$, $\mathbb{H}^2 \times \mathbb{R}$, Nil, Sol, and $SL(2,\mathbb{R})$

> Nil is $H(\mathbb{R})$ with its sub-Riemannian metric.

Thurston's eight 3D "model geometries":

 \mathbb{R}^3 , S^3 , \mathbb{H}^3 , $S^2 \times \mathbb{R}$, $\mathbb{H}^2 \times \mathbb{R}$, Nil, Sol, and $SL(2,\mathbb{R})$

- > Nil is $H(\mathbb{R})$ with its sub-Riemannian metric.
- ► Complex hyperbolic space \mathbb{CH}^2 : horospheres have Nil geometry.

Thurston's eight 3D "model geometries":

 \mathbb{R}^3 , S^3 , \mathbb{H}^3 , $S^2 \times \mathbb{R}$, $\mathbb{H}^2 \times \mathbb{R}$, Nil, Sol, and $SL(2,\mathbb{R})$

- > Nil is $H(\mathbb{R})$ with its sub-Riemannian metric.
- ► Complex hyperbolic space \mathbb{CH}^2 : horospheres have Nil geometry.
- ➤ Higher-dimensional CHⁿ: horospheres are higher Heisenberg groups.

• •

.

► In \mathbb{Z}^2 , asymptotic cones of word metrics are **polygonal** norms

.

> In \mathbb{Z}^2 , asymptotic cones of word metrics are **polygonal** norms

> In \mathbb{Z}^2 , asymptotic cones of word metrics are **polygonal** norms

> In \mathbb{Z}^2 , asymptotic cones of word metrics are **polygonal** norms

$$\frac{\text{spelling length of }g}{\|g\|} \to 1$$

> In \mathbb{Z}^2 , asymptotic cones of word metrics are **polygonal** norms

 $\frac{\text{spelling length of }g}{\|g\|} \to 1$

> In \mathbb{Z}^2 , asymptotic cones of word metrics are **polygonal** norms

> In \mathbb{Z}^2 , asymptotic cones of word metrics are **polygonal** norms

> In \mathbb{Z}^2 , asymptotic cones of word metrics are **polygonal** norms

> In \mathbb{Z}^2 , asymptotic cones of word metrics are **polygonal** norms

> In \mathbb{Z}^2 , asymptotic cones of word metrics are **polygonal** norms

LATTICES IN THE LARGE: PANSU'S THEOREM

> In \mathbb{Z}^2 , asymptotic cones of word metrics are **polygonal** norms

➤ Pansu's thesis ⇒ in H(Z), asymptotic cones of word metrics are polygonal CC metrics.

- Should still wonder: are CC geodesics good approximations of geodesics in the word metric?
- The CC group is divided into two parts (the beelines/walls and the area-grabbers/roof). What about the discrete group?

. .

.

What are the qualitative features of a CC metric? How would you know you are in one?

- What are the qualitative features of a CC metric? How would you know you are in one?
 - ★ There's a family of dilations.

.

- What are the qualitative features of a CC metric? How would you know you are in one?
 - ★ There's a family of dilations.
 - ★ Non-unique geodesics.

.

- What are the qualitative features of a CC metric? How would you know you are in one?
 - ★ There's a family of dilations.
 - ★ Non-unique geodesics.
 - ★ Many dead ends.

- What are the qualitative features of a CC metric? How would you know you are in one?
 - ★ There's a family of dilations.
 - ★ Non-unique geodesics.
 - ★ Many dead ends.
 - * ...

- What are the qualitative features of a CC metric? How would you know you are in one?
 - ★ There's a family of dilations.
 - ★ Non-unique geodesics.
 - ★ Many dead ends.
 - * ...
- ► How about *polygonal* CC metrics on *H*?

What are the qualitative features of a CC metric? How would you know you are in one?

.

- ★ There's a family of dilations.
- ★ Non-unique geodesics.
- ★ Many dead ends.
- * ...
- ► How about *polygonal* CC metrics on *H*?
 - ★ Visually, from a basepoint, space is divided up into two regimes (walls and roof), with rational proportion: many "p/q laws."

Motivating example: The group \mathbb{Z}^2 has standard generators (±1,0), (0,±1). There are also non-standard generators, like the chess-knight moves (±2,±1),(±1,±2).

Motivating example: The group \mathbb{Z}^2 has standard generators (±1,0), (0,±1). There are also non-standard generators, like the chess-knight moves (±2,±1),(±1,±2).

Fundamental question: How many group elements are "spellable" in $\leq n$ letters from the generating alphabet?

Motivating example: The group \mathbb{Z}^2 has standard generators (±1,0), (0,±1). There are also non-standard generators, like the chess-knight moves (±2,±1),(±1,±2).

Fundamental question: How many group elements are "spellable" in $\leq n$ letters from the generating alphabet?

Motivating example: The group \mathbb{Z}^2 has standard generators (±1,0), (0,±1). There are also non-standard generators, like the chess-knight moves (±2,±1),(±1,±2).

Fundamental question: How many group elements are "spellable" in $\leq n$ letters from the generating alphabet?

We can write $\beta_n = \#B_n$, $\sigma_n = \#S_n$ for the point count of balls and spheres in the word metric. As functions of *n*, these are called **growth functions** of (*G*,*S*) for a group *G* and generating set *S*.

Growth functions depend on generators (*G*,*S*), but change of genset preserves growth rate, so polynomiality (and degree) is an invariant of *G*, and so is exponential growth.

Growth functions depend on generators (*G*,*S*), but change of genset preserves growth rate, so polynomiality (and degree) is an invariant of *G*, and so is exponential growth.

(G,S)	eta_n (n \gg 1)	σ_n (n \gg 1)	recursion $\sigma_n =$	$\mathbb{S}(x)$	Ω	$G_{\Omega}(n)$
(\mathbb{Z},std)	2n+1	2	σ_{n-1}	$\frac{1+x}{1-x}$		2n + 1
(\mathbb{Z}^2,std)	$2n^2 + 2n + 1$	4n	$2\sigma_{n-1} - \sigma_{n-2}$	$\frac{(1+x)^2}{(1-x)^2}$	\diamond	$2n^2 + 2n + 1$
(\mathbb{Z}^2,hex)	$3n^2 + 3n + 1$	6n	$2\sigma_{n-1} - \sigma_{n-2}$	$\frac{1+4x+x^2}{(1-x)^2}$	\bigcirc	$3n^2 + 3n + 1$
$(\mathbb{Z}^2,chess)$	$14n^2-6n+5$	28n-20	$2\sigma_{n-1} - \sigma_{n-2}$	$\frac{(1+x)(1+5x+12x^2-8x^4+4x^5)}{(1-x)^2}$	\bigcirc	$14n^2 + 6n + 1$
(\mathbb{Z}^3,std)	$\frac{(2n+1)(2n^2+2n+3)}{3}$	$4n^2+2$	$3\sigma_{n-1} - 3\sigma_{n-2} + \sigma_{n-3}$	$rac{(1+x)^3}{(1-x)^3} \ rac{1+x}{1-3x}$	\bigoplus	$\frac{(2n+1)(2n^2+2n+3)}{3}$
(F_2,std)	$2 \cdot 3^n - 1$	$4 \cdot 3^{n-1}$	$3\sigma_{n-1}$	$\frac{1+\dot{x}}{1-3x}$		

Growth functions depend on generators (*G*,*S*), but change of genset preserves growth rate, so polynomiality (and degree) is an invariant of *G*, and so is exponential growth.

(G,S)	eta_n (n \gg 1)	σ_n (n \gg 1)	recursion $\sigma_n =$	$\mathbb{S}(x)$	Ω	$G_{\Omega}(n)$
(\mathbb{Z},std)	2n+1	2	σ_{n-1}	$\frac{1+x}{1-x}$		2n + 1
(\mathbb{Z}^2,std)	$2n^2 + 2n + 1$	4n	$2\sigma_{n-1} - \sigma_{n-2}$	$\frac{(1+x)^2}{(1-x)^2}$	\diamond	$2n^2 + 2n + 1$
(\mathbb{Z}^2,hex)	$3n^2 + 3n + 1$	6n	$2\sigma_{n-1} - \sigma_{n-2}$	$\frac{1+4x+x^2}{(1-x)^2}$	\bigcirc	$3n^2 + 3n + 1$
$(\mathbb{Z}^2,chess)$	$14n^2 - 6n + 5$	28n-20	$2\sigma_{n-1} - \sigma_{n-2}$	$\frac{(1+x)(1+5x+12x^2-8x^4+4x^5)}{(1-x)^2}$	\bigcirc	$14n^2 + 6n + 1$
(\mathbb{Z}^3,std)	$\frac{(2n+1)(2n^2+2n+3)}{3}$	$4n^2 + 2$	$3\sigma_{n-1} - 3\sigma_{n-2} + \sigma_{n-3}$	$\frac{(1+x)^3}{(1-x)^3}$	\bigoplus	$\frac{(2n+1)(2n^2+2n+3)}{3}$
(F_2,std)	$2 \cdot 3^n - 1$	$4 \cdot 3^{n-1}$	$3\sigma_{n-1}$	$rac{(1+x)^3}{(1-x)^3} \ rac{1+x}{1-3x}$	·	-

One key tool used to study growth functions is their associated **generating functions**: treat $\sigma(n)$ as sequence σ_n and study $S(x) = \sum \sigma_n x^n$.

Growth functions depend on generators (*G*,*S*), but change of genset preserves growth rate, so polynomiality (and degree) is an invariant of *G*, and so is exponential growth.

(G,S)	eta_n (n \gg 1)	σ_n (n \gg 1)	recursion $\sigma_n =$	$\mathbb{S}(x)$	Ω	$G_{\Omega}(n)$
(\mathbb{Z},std)	2n+1	2	σ_{n-1}	$\frac{1+x}{1-x}$		2n + 1
(\mathbb{Z}^2,std)	$2n^2 + 2n + 1$	4n	$2\sigma_{n-1} - \sigma_{n-2}$	$\frac{(1+x)^2}{(1-x)^2}$	\diamond	$2n^2 + 2n + 1$
(\mathbb{Z}^2,hex)	$3n^2 + 3n + 1$	6n	$2\sigma_{n-1} - \sigma_{n-2}$	$\frac{1+4x+x^2}{(1-x)^2}$	\bigcirc	$3n^2 + 3n + 1$
$(\mathbb{Z}^2,chess)$	$14n^2 - 6n + 5$	28n-20	$2\sigma_{n-1} - \sigma_{n-2}$	$\frac{(1+x)(1+5x+12x^2-8x^4+4x^5)}{(1-x)^2}$	\bigcirc	$14n^2 + 6n + 1$
(\mathbb{Z}^3,std) (F_2,std)	$\frac{(2n+1)(2n^2+2n+3)}{3}$ $2\cdot 3^n - 1$	$\begin{array}{l} 4n^2+2\\ 4{\cdot}3^{n-1} \end{array}$	$\begin{array}{l} 3\sigma_{n-1} - 3\sigma_{n-2} + \sigma_{n-3} \\ 3\sigma_{n-1} \end{array}$	$\frac{\frac{(1+x)^3}{(1-x)^3}}{\frac{1+x}{1-3x}}$	\bigoplus	$\frac{(2n+1)(2n^2+2n+3)}{3}$

One key tool used to study growth functions is their associated **generating functions**: treat $\sigma(n)$ as sequence σ_n and study $S(x) = \sum \sigma_n x^n$.

Fact: $\sigma(n)$ satisfies a Fibonacci-style recursion iff $S(x) \in Q(x)$.

Growth functions depend on generators (*G*,*S*), but change of genset preserves growth rate, so polynomiality (and degree) is an invariant of *G*, and so is exponential growth.

(G,S)	eta_n (n \gg 1)	σ_n (n \gg 1)	recursion $\sigma_n =$	$\mathbb{S}(x)$	Ω	$G_\Omega(n)$
(\mathbb{Z},std)	2n+1	2	σ_{n-1}	$\frac{1+x}{1-x}$		2n + 1
(\mathbb{Z}^2,std)	$2n^2 + 2n + 1$	4n	$2\sigma_{n-1} - \sigma_{n-2}$	$\frac{(1+x)^2}{(1-x)^2}$	\diamond	$2n^2 + 2n + 1$
(\mathbb{Z}^2,hex)	$3n^2 + 3n + 1$	6n	$2\sigma_{n-1} - \sigma_{n-2}$	$\frac{1+4x+x^2}{(1-x)^2}$	\bigcirc	$3n^2 + 3n + 1$
$(\mathbb{Z}^2,chess)$	$14n^2-6n+5$	28n-20	$2\sigma_{n-1} - \sigma_{n-2}$	$\frac{(1+x)(1+5x+12x^2-8x^4+4x^5)}{(1-x)^2}$	\bigcirc	$14n^2 + 6n + 1$
$(\mathbb{Z}^3,std)\ (F_2,std)$	$\frac{(2n+1)(2n^2+2n+3)}{3}$ $2\cdot 3^n - 1$	$\begin{array}{l} 4n^2+2\\ 4{\cdot}3^{n-1} \end{array}$	$\begin{array}{l} 3\sigma_{n-1}-3\sigma_{n-2}+\sigma_{n-3}\\ 3\sigma_{n-1} \end{array}$	$\frac{\frac{(1+x)^3}{(1-x)^3}}{\frac{1+x}{1-3x}}$	\Leftrightarrow	$\frac{(2n+1)(2n^2+2n+3)}{3}$

One key tool used to study growth functions is their associated **generating functions**: treat $\sigma(n)$ as sequence σ_n and study $S(x) = \sum \sigma_n x^n$.

Fact: $\sigma(n)$ satisfies a Fibonacci-style recursion iff $S(x) \in Q(x)$.

Growth functions depend on generators (*G*,*S*), but change of genset preserves growth rate, so polynomiality (and degree) is an invariant of *G*, and so is exponential growth.

"Ehrhart polynomials"

(G,S)	eta_n (n \gg 1)	σ_n (n \gg 1)	recursion $\sigma_n =$	$\mathbb{S}(x)$	Ω	$G_\Omega(n)$
(\mathbb{Z},std)	2n+1	2	σ_{n-1}	$\frac{1+x}{1-x}$		2n + 1
(\mathbb{Z}^2,std)	$2n^2 + 2n + 1$	4n	$2\sigma_{n-1} - \sigma_{n-2}$	$\frac{(1+x)^2}{(1-x)^2}$	\diamond	$2n^2 + 2n + 1$
(\mathbb{Z}^2,hex)	$3n^2 + 3n + 1$	6n	$2\sigma_{n-1} - \sigma_{n-2}$	$\frac{1+4x+x^2}{(1-x)^2}$	\bigcirc	$3n^2 + 3n + 1$
$(\mathbb{Z}^2,chess)$	$14n^2 - 6n + 5$	28n-20	$2\sigma_{n-1} - \sigma_{n-2}$	$\frac{(1+x)(1+5x+12x^2-8x^4+4x^5)}{(1-x)^2}$	\bigcirc	$14n^2 + 6n + 1$
(\mathbb{Z}^3,std)	$\tfrac{(2n+1)(2n^2+2n+3)}{3}$	$4n^{2} + 2$	$3\sigma_{n-1} - 3\sigma_{n-2} + \sigma_{n-3}$	$\frac{(1+x)^3}{(1-x)^3}$	\bigoplus	$\frac{(2n+1)(2n^2+2n+3)}{3}$
(F_2,std)	$2 \cdot 3^n - 1$	$4 \cdot 3^{n-1}$	$3\sigma_{n-1}$	$\frac{\overline{(1-x)^3}}{\frac{1+x}{1-3x}}$		

One key tool used to study growth functions is their associated **generating functions**: treat $\sigma(n)$ as sequence σ_n and study $S(x) = \sum \sigma_n x^n$.

Fact: $\sigma(n)$ satisfies a Fibonacci-style recursion iff $S(x) \in Q(x)$.

• •

➤ Can study growth rate by imposing equivalence relation by affine rescaling of domain and range: *f*≤*g* means

➤ Can study growth rate by imposing equivalence relation by affine rescaling of domain and range: *f*≤*g* means

 $\exists A \text{ s.t. } f(t) \leq Ag(At+A) + A \quad \forall t.$

➤ Can study growth rate by imposing equivalence relation by affine rescaling of domain and range: *f*≤*g* means

 $\exists A \text{ s.t. } f(t) \leq Ag(At+A) + A \quad \forall t.$

If $f \sim g$ means $f \leq g$, $g \leq f$, then $[\sigma]$ is a quasi-isometry invariant.

➤ Can study growth rate by imposing equivalence relation by affine rescaling of domain and range: *f*≤*g* means

$$\exists A \text{ s.t. } f(t) \leq Ag(At+A) + A \quad \forall t.$$

If $f \sim g$ means $f \leq g$, $g \leq f$, then $[\sigma]$ is a quasi-isometry invariant.

Theorem(Bass-Guivarc'h 1970s): *if* LCS of a nilpotent group has quotients $G_i/G_{i+1} = \mathbb{Z}^{d_i} \oplus$ finite, then $\beta(n) \sim n^d$ for $d = \sum i d_i$.

➤ Can study growth rate by imposing equivalence relation by affine rescaling of domain and range: *f*≤*g* means

$$\exists A \text{ s.t. } f(t) \leq Ag(At+A) + A \quad \forall t.$$

If $f \sim g$ means $f \leq g$, $g \leq f$, then $[\sigma]$ is a quasi-isometry invariant.

Theorem(Bass-Guivarc'h 1970s): *if* LCS of a nilpotent group has quotients $G_i/G_{i+1} = \mathbb{Z}^{d_i} \oplus$ finite, then $\beta(n) \sim n^d$ for $d = \sum i d_i$.

➤ Can study growth rate by imposing equivalence relation by affine rescaling of domain and range: *f*≤*g* means

$$\exists A \text{ s.t. } f(t) \leq Ag(At+A) + A \quad \forall t.$$

If $f \sim g$ means $f \leq g$, $g \leq f$, then $[\sigma]$ is a quasi-isometry invariant.

Theorem(Bass-Guivarc'h 1970s): *if* LCS of a nilpotent group has quotients $G_i/G_{i+1} = \mathbb{Z}^{d_i} \oplus$ finite, then $\beta(n) \sim n^d$ for $d = \sum i d_i$.

That is: nilpotent groups have polynomial growth.

➤ Can study growth rate by imposing equivalence relation by affine rescaling of domain and range: *f*≤*g* means

$$\exists A \text{ s.t. } f(t) \leq Ag(At+A) + A \quad \forall t.$$

If $f \sim g$ means $f \leq g, g \leq f$, then $[\sigma]$ is a quasi-isometry invariant.

Theorem(Bass-Guivarc'h 1970s): *if* LCS of a nilpotent group has quotients $G_i/G_{i+1} = \mathbb{Z}^{d_i} \oplus$ finite, then $\beta(n) \sim n^d$ for $d = \sum i d_i$.

That is: nilpotent groups have polynomial growth.

Theorem(Gromov 1981): *if any group has a polynomial bound on growth, then it is virtually nilpotent!*

➤ Can study growth rate by imposing equivalence relation by affine rescaling of domain and range: *f*≤*g* means

$$\exists A \text{ s.t. } f(t) \leq Ag(At+A) + A \quad \forall t.$$

If $f \sim g$ means $f \leq g$, $g \leq f$, then $[\sigma]$ is a quasi-isometry invariant.

Theorem(Bass-Guivarc'h 1970s): *if* LCS of a nilpotent group has quotients $G_i/G_{i+1} = \mathbb{Z}^{d_i} \oplus$ finite, then $\beta(n) \sim n^d$ for $d = \sum i d_i$.

That is: nilpotent groups have polynomial growth.

Theorem(Gromov 1981): *if any group has a polynomial bound on growth, then it is virtually nilpotent!*

THEOREMS ABOUT RATIONALITY
Many groups are known to have rational growth in a special generating sets, e.g. Coxeter groups (exercise in Bourbaki!)

Many groups are known to have rational growth in a special generating sets, e.g. Coxeter groups (exercise in Bourbaki!)

Theorem (Cannon, Thurston, Gromov): *Hyperbolic groups have rational growth in* **any** *generators*.

Many groups are known to have rational growth in a special generating sets, e.g. Coxeter groups (exercise in Bourbaki!)

Theorem (Cannon, Thurston, Gromov): *Hyperbolic groups have rational* growth in **any** generators.

Theorem (M.Benson 1983): Virtually abelian groups have rational growth in **any** generators.

Many groups are known to have rational growth in a special generating sets, e.g. Coxeter groups (exercise in Bourbaki!)

Theorem (Cannon, Thurston, Gromov): *Hyperbolic groups have rational* growth in **any** generators.

Theorem (M.Benson 1983): Virtually abelian groups have rational growth in **any** generators.

Theorem (Shapiro, Benson 1980s): $H(\mathbb{Z})$ has rational growth in standard generators.

Many groups are known to have rational growth in a special generating sets, e.g. Coxeter groups (exercise in Bourbaki!)

Theorem (Cannon, Thurston, Gromov): *Hyperbolic groups have rational* growth in **any** generators.

Theorem (M.Benson 1983): Virtually abelian groups have rational growth in **any** generators.

Theorem (Shapiro, Benson 1980s): $H(\mathbb{Z})$ has rational growth in standard generators.

Theorem (Stoll 1996): H_5 has rational growth in one generating set but transcendental in another!

SUMMARY OF RATIONALITY RESULTS

For all S	For at least one S	For no S
hyperbolic groups	some automatic groups	unsolvable word problem
virtually abelian groups	Coxeter groups, standard S	intermediate growth
Heisenberg group H	\blacksquare H, standard S	
	H_5 , cubical S	
	BS(1,n), standard S	

Many more in middle category: some more BS(p,q) examples plus "higher BS groups," quotients of triangular buildings, some amalgams and wreath products, some solvable groups, relatively hyperbolic groups, …

CANNON 1984, BEING ZEN ABOUT GROUPS

► "We shall... show that the **global combinatorial structure** of such groups is particularly simple in the sense that their Cayley group graphs (Dehn Gruppenbilder) have descriptions by linear recursion. We view this latter result as a promising generalization of small cancellation theory... The result also indicates that cocompact, discrete hyperbolic groups can be understood globally in the same sense that the integers \mathbb{Z} can be understood: feeling, as we do, that we understand the simple linear recursion $n \rightarrow n+1$ in \mathbb{Z} , we extend our local picture of \mathbb{Z} recursively in our mind's eye toward infinity. One obtains a global picture of the arbitrary cocompact, discrete hyperbolic group G in the same way: first, one discovers the local picture of *G*, then the recursive structure of *G* by means of which copies of the local structure are integrated."

RELATING GROUP GROWTH TO LATTICE COUNTING

Let's go back and see why lattice counts and Ehrhart polynomials were related to growth functions for \mathbb{Z}^2 . You can get a coarse estimate of β_n by figuring out the shape of the cloud of points B_n and counting lattice points inside it.

WORD METRICS HAVE "LIMIT SHAPES" YOU CAN COUNT WITH

To see that you get an accurate first-order estimate from the Ehrhart polynomial, it suffices to show that almost all lattice points in the n_{th} dilate are reached in n steps.

This works well here; in general, the large spheres very closely resemble an annular shell at the boundary of your defining polygon.

GROUP GROWTH MEETS LATTICE COUNTING

(G,S)	eta_n (n \gg 1)	Ω	$G_\Omega(n)$
(\mathbb{Z},std)	2n+1		2n+1
(\mathbb{Z}^2,std)	$2n^2 + 2n + 1$	\diamond	$2n^2 + 2n + 1$
(\mathbb{Z}^2,hex)	$3n^2 + 3n + 1$	\bigcirc	$3n^2 + 3n + 1$
$(\mathbb{Z}^2,chess)$	$14n^2 - 6n + 5$	\bigcirc	$14n^2 + 6n + 1$
(\mathbb{Z}^3,std)	$rac{(2n+1)(2n^2+2n+3)}{3}$	\bigoplus	$rac{(2n+1)(2n^2+2n+3)}{3}$
(F_2,std)	$2{\cdot}3^n-1$?	?

GROUP GROWTH MEETS LATTICE COUNTING

.

(G,S)	eta_n (n \gg 1)	Ω	$G_\Omega(n)$
(\mathbb{Z},std)	2n + 1		2n+1
(\mathbb{Z}^2,std)	$2n^2 + 2n + 1$	\diamond	$2n^2 + 2n + 1$
(\mathbb{Z}^2,hex)	$3n^2 + 3n + 1$	\bigcirc	$3n^2 + 3n + 1$
$(\mathbb{Z}^2,chess)$	$14n^2 - 6n + 5$	\bigcirc	$14n^2 + 6n + 1$
(\mathbb{Z}^3,std)	$rac{(2n+1)(2n^2+2n+3)}{3}$	\Rightarrow	$rac{(2n+1)(2n^2+2n+3)}{3}$
(F_2,std)	$2 \cdot 3^n - 1$?	?

Caveat: only accurate to first order!

GROUP GROWTH MEETS LATTICE COUNTING

Caveat: only accurate to first order!

Theorem (Shapiro, Benson 1980s): *The spherical growth of* $H(\mathbb{Z})$ *, std is*

 $\sigma_n = (31n^3 - 57n^2 + 105n + c_n)/18,$

where $c_n = -7$, -14, 9, -16, -23, 18, -7, -32, 9, 2, -23, 0, repeating with period 12, for $n \ge 1$.

Theorem (Shapiro, Benson 1980s): *The spherical growth of* $H(\mathbb{Z})$ *, std is*

 $\sigma_n = (31n^3 - 57n^2 + 105n + c_n)/18,$

where $c_n = -7$, -14, 9, -16, -23, 18, -7, -32, 9, 2, -23, 0, repeating with period 12, for $n \ge 1$.

This is called a **quasipolynomial**. **Fact**: if a sequence is polynomially bounded, then it has rational growth iff it is eventually quasipolynomial.

Theorem (Shapiro, Benson 1980s): *The spherical growth of* $H(\mathbb{Z})$ *, std is*

 $\sigma_n = (31n^3 - 57n^2 + 105n + c_n)/18,$

where $c_n = -7$, -14, 9, -16, -23, 18, -7, -32, 9, 2, -23, 0, repeating with period 12, for $n \ge 1$.

This is called a **quasipolynomial**. **Fact**: if a sequence is polynomially bounded, then it has rational growth iff it is eventually quasipolynomial.

Theorem (D-Mooney 2014): For any Heisenberg generators, the number of lattice points in CC balls is quasipolynomial.

Theorem (Shapiro, Benson 1980s): *The spherical growth of* $H(\mathbb{Z})$ *, std is*

 $\sigma_n = (31n^3 - 57n^2 + 105n + c_n)/18,$

where $c_n = -7$, -14, 9, -16, -23, 18, -7, -32, 9, 2, -23, 0, repeating with period 12, for $n \ge 1$.

This is called a **quasipolynomial**. **Fact**: if a sequence is polynomially bounded, then it has rational growth iff it is eventually quasipolynomial.

Theorem (D-Mooney 2014): For any Heisenberg generators, the number of lattice points in CC balls is quasipolynomial.

Theorem (D-Shapiro **arXiv**): For any Heisenberg generators, the group growth function is eventually quasipolynomial.

Theorem (Shapiro, Benson 1980s): *The spherical growth of* $H(\mathbb{Z})$ *, std is*

 $\sigma_n = (31n^3 - 57n^2 + 105n + c_n)/18,$

where $c_n = -7$, -14, 9, -16, -23, 18, -7, -32, 9, 2, -23, 0, repeating with period 12, for $n \ge 1$.

This is called a **quasipolynomial**. **Fact**: if a sequence is polynomially bounded, then it has rational growth iff it is eventually quasipolynomial.

Theorem (D-Mooney 2014): For any Heisenberg generators, the number of lattice points in CC balls is quasipolynomial.

Theorem (D-Shapiro **arXiv**): For any Heisenberg generators, the group growth function is eventually quasipolynomial.

(not just bounded above and below like $An^3 \le \sigma_n \le Bn^3$, which is classical)

GAME PLAN FOR HEISENBERG PANRATIONALITY

► We produce a finite collection of languages that we call *shapes* and *patterns* that surject onto *H*.

.

- We show that there are "rational competitions" that determine a single shape or pattern as the "winner" for each group element.
- We show that enumerating the winning spellings by length is a rational function for each shape and pattern.
- Conclusion: overall growth function is a sum of finitely many rational functions, so it is rational.

Consider \mathbb{Z}^2 with chess-knight generators $\{(\pm 2, \pm 1), (\pm 1, \pm 2)\}$. Let $a_1 = (2, 1), a_2 = (1, 2), and so on clockwise to <math>a_8$.

- Consider \mathbb{Z}^2 with chess-knight generators $\{(\pm 2, \pm 1), (\pm 1, \pm 2)\}$. Let $a_1 = (2, 1), a_2 = (1, 2), and so on clockwise to <math>a_8$.
- ► Many elements in the sector $0 \le y/2 \le x \le 2y$ bounded by a_1, a_2 can be written as linear combinations of those, but not all. For instance, $(1,1) = a_3 a_8$ and $(2,2) = a_3^2 a_8^2$ are geodesic.

- Consider \mathbb{Z}^2 with chess-knight generators $\{(\pm 2, \pm 1), (\pm 1, \pm 2)\}$. Let $a_1 = (2, 1), a_2 = (1, 2), and so on clockwise to <math>a_8$.
- ➤ Many elements in the sector $0 \le y/2 \le x \le 2y$ bounded by a_1, a_2 can be written as linear combinations of those, but not all. For instance, $(1,1) = a_3 a_8$ and $(2,2) = a_3^2 a_8^2$ are geodesic.

- ► For that sector, 3 patterns suffice:
 - $\star a_1^* a_2^*$
 - $\star a_3 a_8 a_1^* a_2^*$
 - $\star \ a_3^2 a_8^2 \ a_1^* a_2^*$

. .

► The patterns can be treated as functions $\mathbb{N}^2 \rightarrow \mathbb{Z}^2$ or as affine functions to position and length.

➤ The patterns can be treated as functions $\mathbb{N}^2 \rightarrow \mathbb{Z}^2$ or as affine functions to position and length.

★ $v=a_1^*a_2^*$ has length p+q, position (2p+q,p+2q)

- ➤ The patterns can be treated as functions $\mathbb{N}^2 \rightarrow \mathbb{Z}^2$ or as affine functions to position and length.
 - * $v=a_1^*a_2^*$ has length p+q, position (2p+q,p+2q)
 - * $w = a_3 a_8 a_1^* a_2^*$ has length p + q + 2, position (2p + q + 1, p + 2q + 1)

- ► The patterns can be treated as functions $\mathbb{N}^2 \rightarrow \mathbb{Z}^2$ or as affine functions to position and length.
 - * $v = a_1^* a_2^*$ has length p+q, position (2p+q,p+2q)
 - * $w = a_3 a_8 a_1^* a_2^*$ has length p + q + 2, position (2p + q + 1, p + 2q + 1)
 - * $x = a_3^2 a_8^2 a_1^* a_2^*$ has length p + q + 4, position (2p + q + 2, p + 2q + 2)

- ➤ The patterns can be treated as functions $\mathbb{N}^2 \rightarrow \mathbb{Z}^2$ or as affine functions to position and length.
 - * $v=a_1^*a_2^*$ has length p+q, position (2p+q,p+2q)
 - * $w = a_3 a_8 a_1^* a_2^*$ has length p + q + 2, position (2p + q + 1, p + 2q + 1)
 - * $x = a_3^2 a_8^2 a_1^* a_2^*$ has length p + q + 4, position (2p + q + 2, p + 2q + 2)
- ➤ When does each one "win" to express a point (*a*,*b*)? Depends on congruence class of *a*+*b* (mod 3).

- ➤ The patterns can be treated as functions $\mathbb{N}^2 \rightarrow \mathbb{Z}^2$ or as affine functions to position and length.
 - * $v=a_1^*a_2^*$ has length p+q, position (2p+q,p+2q)
 - * $w = a_3 a_8 a_1^* a_2^*$ has length p + q + 2, position (2p + q + 1, p + 2q + 1)
 - * $x = a_3^2 a_8^2 a_1^* a_2^*$ has length p + q + 4, position (2p + q + 2, p + 2q + 2)
- ➤ When does each one "win" to express a point (*a*,*b*)? Depends on congruence class of *a*+*b* (mod 3).
- Let G_w(n) = {(a,b): w is smallest-indexed pattern to reach (a,b) in length n; no pattern reaches (a,b) in length <n}</p>

- ► The patterns can be treated as functions $\mathbb{N}^2 \rightarrow \mathbb{Z}^2$ or as affine functions to position and length.
 - * $v = a_1^* a_2^*$ has length p+q, position (2p+q,p+2q)
 - * $w = a_3 a_8 a_1^* a_2^*$ has length p + q + 2, position (2p + q + 1, p + 2q + 1)
 - * $x = a_3^2 a_8^2 a_1^* a_2^*$ has length p + q + 4, position (2p + q + 2, p + 2q + 2)
- ➤ When does each one "win" to express a point (*a*,*b*)? Depends on congruence class of *a*+*b* (mod 3).
- Let G_w(n) = {(a,b): w is smallest-indexed pattern to reach (a,b) in length n; no pattern reaches (a,b) in length <n}</p>
- ► Here, $G_w(n) = \{(n-1, 2n-3), ..., (2n-3, n-1)\}$ for $n \ge 2$.

MAJOR TOOL: COUNTING IN POLYHEDRA

- Let an elementary family {E(n)} in Z^d be defined by finitely many equalities, inequalities, and congruences as below, where the *b* are affine in *n*.
- A bounded polyhedral family {P(n)} is a finite union of finite intersections of these in which each P(n) is bounded.

$$\left\{ egin{aligned} \mathsf{a}_i \cdot \mathsf{x} &= b_i(n) \ ; \ \mathsf{a}_j \cdot \mathsf{x} &\leq b_j(n) \ ; \ \mathsf{a}_k \cdot \mathsf{x} &\equiv b_k(n) \ \pmod{c_k} \end{aligned}
ight.$$

 $G_{w}(n) \text{ from chess example:}$ $\begin{cases} x+y=3n+1; \\ x, y, y-x/2, 2x-y \text{ all } \geq 0 \end{cases}$

► Theorem (Benson): if $f: \mathbb{Z}^d \to \mathbb{Z}$ is polynomial and $\{P(n)\}$ is a bounded polyhedral family, then

$$F(x) = \sum_{n=0}^{\infty} \sum_{\mathbf{v} \in P(n)} f(\mathbf{v}) x^n$$
 is a rational function.

.

Theorem (D-Mooney 2014): For any Heisenberg generators, the number of lattice points in CC balls is quasipolynomial.

Theorem (D-Mooney 2014): For any Heisenberg generators, the number of lattice points in CC balls is quasipolynomial.

Theorem (D-Mooney 2014): For any Heisenberg generators, the number of lattice points in CC balls is quasipolynomial.

How to see this: Let the height of the sphere over a point in *xy* plane be f(a,b); this is a quadratic polynomial on each quadrilateral region *R* of the footprint. Then the lattice point count in $\delta_n \mathscr{B}$ is given by

Theorem (D-Mooney 2014): For any Heisenberg generators, the number of lattice points in CC balls is quasipolynomial.

How to see this: Let the height of the sphere over a point in *xy* plane be f(a,b); this is a quadratic polynomial on each quadrilateral region *R* of the footprint. Then the lattice point count in $\delta_n \mathscr{B}$ is given by

$$F(x) = \sum_{n} \sum_{R} \sum_{(a,b)\in nR} n^2 f(a/n,b/n) x^n$$

APPLICATION: CHESS-KNIGHT RATIONALITY

. .
► Recall that $G_w(n)$ is the set of (a,b) where w is the winning pattern expressing (a,b) geodesically at length n.

- ► Recall that $G_w(n)$ is the set of (a,b) where w is the winning pattern expressing (a,b) geodesically at length n.
 - ★ e.g., for w= $a_3 a_8 a_1^* a_2^*$, we had $G_w(n) = \{(n-1, 2n-3), \dots, (2n-3, n-1)\}, n \ge 2$.

- ► Recall that $G_w(n)$ is the set of (a,b) where w is the winning pattern expressing (a,b) geodesically at length n.
 - ★ e.g., for w= $a_3 a_8 a_1^* a_2^*$, we had $G_w(n) = \{(n-1, 2n-3), \dots, (2n-3, n-1)\}, n \ge 2$.
- ➤ Then the sum over w of |G_w(n) | will equal σ_n, because it adds up the total number of positions reached geodesically at length n. Equivalently, we sum 1 over G_w(n).

- ► Recall that $G_w(n)$ is the set of (a,b) where w is the winning pattern expressing (a,b) geodesically at length n.
 - ★ e.g., for w = $a_3 a_8 a_1^* a_2^*$, we had $G_w(n) = \{(n-1, 2n-3), \dots, (2n-3, n-1)\}, n \ge 2$.
- ➤ Then the sum over w of |G_w(n) | will equal σ_n, because it adds up the total number of positions reached geodesically at length n. Equivalently, we sum 1 over G_w(n).

$$\mathbb{S}(x) = \sum_{n} \sigma_n x^n = \sum_{n} \sum_{W} \sum_{G_W(n)} x^n$$

• •

Balancing Lemma: Busemann's polygon is isoperimetrically optimal, and area falls off quadratically when you unbalance the sidelengths.

- Balancing Lemma: Busemann's polygon is isoperimetrically optimal, and area falls off quadratically when you unbalance the sidelengths.
- Shape Lemma: every group element in the "roof" can be geodesically represented by something that fellow-travels an area-grabber CC geodesic.

- Balancing Lemma: Busemann's polygon is isoperimetrically optimal, and area falls off quadratically when you unbalance the sidelengths.
- Shape Lemma: every group element in the "roof" can be geodesically represented by something that fellow-travels an area-grabber CC geodesic.
- Pattern Lemma: every group element in the "walls" can be geodesically represented by something that fellow-travels a beeline CC geodesic.

- Balancing Lemma: Busemann's polygon is isoperimetrically optimal, and area falls off quadratically when you unbalance the sidelengths.
- Shape Lemma: every group element in the "roof" can be geodesically represented by something that fellow-travels an area-grabber CC geodesic.
- Pattern Lemma: every group element in the "walls" can be geodesically represented by something that fellow-travels a beeline CC geodesic.
- Competition Lemma: a winning shape or pattern for each (*a*,*b*) position is determined by finitely many linear equalities, inequalities, and congruences.

SUBTLETIES

The length and (*a*,*b*) position of a shape are affine functions of the inputs, but the height (*c* coordinate) is quadratic.

- The length and (*a*,*b*) position of a shape are affine functions of the inputs, but the height (*c* coordinate) is quadratic.
- This is a big problem for writing down which group elements are represented by a shape: the rational competition doesn't allow you to check a quadratic equation. Cute idea to get around this: when two shapes compete, the *difference* in their heights is a linear polynomial, so you ascertain that they reach the same height by checking *linear=0*.

• •

$$\mathbb{S}^{\mathsf{reg}}(x) = \sum_{\omega}^{\infty} \sum_{n=0}^{\infty} \sum_{\Delta=0}^{K} \sum_{\substack{G_{\omega}^{\Delta}(n)}} x^{\Delta} x^{n},$$

• •

$$\begin{split} \mathbb{S}^{\mathsf{reg}}(x) &= \sum_{\omega}^{\infty} \sum_{n=0}^{\infty} \sum_{\Delta=0}^{K} \sum_{\substack{G_{\omega}^{\Delta}(n)}} x^{\Delta} x^{n}, \\ \\ \hline \\ \text{shapes} \end{split}$$

.

• •

$$\begin{split} \mathbb{S}^{\mathsf{reg}}(x) &= \sum_{\omega}^{\infty} \sum_{n=0}^{\infty} \sum_{\Delta=0}^{K} \sum_{\substack{G_{\omega}^{\Delta}(n)}} x^{\Delta} x^{n}, \\ \\ \hline \\ \text{shapes length} \end{split}$$

• •

$$\mathbb{S}^{\mathsf{reg}}(x) = \sum_{\omega} \sum_{n=0}^{\infty} \sum_{\Delta=0}^{K} \sum_{\substack{G_{\omega}^{\Delta}(n)}} x^{\Delta} x^{n},$$

shapes length slack in
the length

$$\begin{split} \mathbb{S}^{\mathrm{reg}}(x) &= \sum_{\omega} \sum_{n=0}^{\infty} \sum_{\substack{\Delta=0 \\ \Delta=0}}^{K} \sum_{\substack{G_{\omega}^{\Delta}(n) \\ \text{shapes length slack in the length slack in the length slack in the length shape wins}} positions \\ \mathbb{S}^{\mathrm{uns}}(x) &= \sum_{\mathrm{w}} \sum_{n=0}^{\infty} \sum_{\substack{\Delta=0 \\ \Delta=0}}^{K} \sum_{\substack{G_{\mathrm{w}}^{\Delta}(n) \\ G_{\mathrm{w}}^{\Delta}(n)}} p_{\mathrm{w}}^{\Delta}(a,b) x^{\Delta} x^{n}, \end{split}$$

• •

$$\begin{split} \mathbb{S}^{\mathrm{reg}}(x) &= \sum_{\omega} \sum_{n=0}^{\infty} \sum_{\Delta=0}^{K} \sum_{\substack{G_{\omega}^{\Delta}(n) \\ \text{shapes length slack in \\ \text{the length length slack in } \\ \text{shape wins}} x^{\Delta} x^{n}, \\ \mathbb{S}^{\mathrm{uns}}(x) &= \sum_{\mathrm{w}} \sum_{n=0}^{\infty} \sum_{\Delta=0}^{K} \sum_{\substack{G_{\mathrm{w}}^{\Delta}(n) \\ G_{\mathrm{w}}^{\Delta}(n)}} p_{\mathrm{w}}^{\Delta}(a,b) x^{\Delta} x^{n}, \\ \\ \hline patterns \end{split}$$

• •

$$\begin{split} \mathbb{S}^{\mathsf{reg}}(x) &= \sum_{\omega} \sum_{n=0}^{\infty} \sum_{\Delta=0}^{K} \sum_{\substack{G_{\omega}^{\Delta}(n) \\ \text{shapes length slack in \\ \text{the length length slack in } \\ \text{shape wins}} positions \\ (a,b) \text{ at which } \\ \text{shape wins} \\ \end{bmatrix} \\ \mathbb{S}^{\mathsf{uns}}(x) &= \sum_{\mathsf{w}} \sum_{n=0}^{\infty} \sum_{\substack{n=0 \\ \Delta=0}}^{K} \sum_{\substack{G_{\mathsf{w}}^{\Delta}(n) \\ G_{\mathsf{w}}^{\Delta}(n)}} p_{\mathsf{w}}^{\Delta}(a,b) x^{\Delta} x^{n}, \\ \\ \boxed{\mathsf{patterns length}} \end{split}$$

• •

$$\begin{split} \mathbb{S}^{\mathsf{reg}}(x) &= \sum_{\omega} \sum_{n=0}^{\infty} \sum_{\Delta=0}^{K} \sum_{\substack{G_{\omega}^{\Delta}(n) \\ \text{ shapes length slack in \\ \text{ the length length slack in \\ \text{ shape wins}}} positions \\ (a,b) \text{ at which } shape wins \\ \\ \mathbb{S}^{\mathsf{uns}}(x) &= \sum_{\mathsf{w}} \sum_{n=0}^{\infty} \sum_{\Delta=0}^{K} \sum_{\substack{G_{\mathsf{w}}^{\Delta}(n) \\ G_{\mathsf{w}}^{\Delta}(n)}} p_{\mathsf{w}}^{\Delta}(a,b) \, x^{\Delta} \, x^{n}, \\ \\ \hline \mathsf{patterns length slack} \end{split}$$

...et voilà.

GEOME TRY OF WORDS

Can define almost-convexity, a condition that lets you efficiently build out a Cayley graph.

- Can define almost-convexity, a condition that lets you efficiently build out a Cayley graph.
- ► AC(2): $\exists N \text{ s.t. for any pair of points on the sphere of distance} \leq 2$, they are connected inside the ball by a path of length $\leq N$.

- Can define almost-convexity, a condition that lets you efficiently build out a Cayley graph.
- ► AC(2): $\exists N \text{ s.t. for any pair of points on the sphere of distance} \leq 2$, they are connected inside the ball by a path of length $\leq N$.

- Can define almost-convexity, a condition that lets you efficiently build out a Cayley graph.
- ► AC(2): $\exists N \text{ s.t. for any pair of points on the sphere of distance} \leq 2$, they are connected inside the ball by a path of length $\leq N$.

TRUE for Heisenberg: first prove for polygonal CC metrics, then use bounded difference of word and CC.

- Can define almost-convexity, a condition that lets you efficiently build out a Cayley graph.
- ► AC(2): $\exists N \text{ s.t. for any pair of points on the sphere of distance} \leq 2$, they are connected inside the ball by a path of length $\leq N$.

TRUE for Heisenberg: first prove for polygonal CC metrics, then use bounded difference of word and CC.

SPRAWL

SPRAWL

► What is the average distance between two points on a sphere?
- ► What is the average distance between two points on a sphere?
- ► Let $E(X) = \lim \frac{1}{n} \frac{avg d(x,y)}{x}$. Note $E \le 2$ by triangle inequality.

- ► What is the average distance between two points on a sphere?
- ► Let $E(X) = \lim_{n} \frac{1}{n} \arg_{x,y \in S_n} d(x,y)$. Note $E \le 2$ by triangle inequality.

- ➤ What is the average distance between two points on a sphere?
- ► Let $E(X) = \lim_{n} 1/n \operatorname{avg}_{x,y \in S_n} d(x,y)$. Note $E \le 2$ by triangle inequality.
- ➤ Theorem (D-Lelièvre-Mooney): If X is a non-elementary hyperbolic group with any genset, then E=2.

- ➤ What is the average distance between two points on a sphere?
- ► Let $E(X) = \lim_{n} 1/n \operatorname{avg}_{x,y \in S_n} d(x,y)$. Note $E \le 2$ by triangle inequality.
- ➤ Theorem (D-Lelièvre-Mooney): If X is a non-elementary hyperbolic group with any genset, then E=2.
- ➤ We get: all nilpotent groups have E<2. Proof: CC sphere carries a limit measure that is absolutely continuous with Lebesgue, so there are positive-measure patches with d(x,y) bounded away from 2n.</p>

How likely is some behavior in *H*, or what are statistical invariants? If you can describe it geometrically, just integrate over CC ball.

- How likely is some behavior in *H*, or what are statistical invariants? If you can describe it geometrically, just integrate over CC ball.
- ► Example: geodesic stability, subgroup distortion, ...

- How likely is some behavior in *H*, or what are statistical invariants? If you can describe it geometrically, just integrate over CC ball.
- ► Example: geodesic stability, subgroup distortion, ...

FIGURE 6. The distortion profiles for $K = \{(*, 0, *)\}$ in $H(\mathbb{Z})$ with two different generating sets. The value d = 1 is plotted as white, going red as $d \to \infty$.

► **Dead end depth**: distance from *g* to nearest longer *g*'.

► **Dead end depth**: distance from *g* to nearest longer *g*'.

Hyperbolic groups, Euclidean groups, and groups with more than one end all have bounded dead end depth. But lamplighter groups have "deep pockets." This property can depend on genset.

► **Dead end depth**: distance from *g* to nearest longer *g*'.

- Hyperbolic groups, Euclidean groups, and groups with more than one end all have bounded dead end depth. But lamplighter groups have "deep pockets." This property can depend on genset.
- ► **Retreat depth**: how large must *d* be for *g* to be in an unbounded component of the complement of B_{n-d} ?

- ► **Dead end depth**: distance from *g* to nearest longer *g*'.
- Hyperbolic groups, Euclidean groups, and groups with more than one end all have bounded dead end depth. But lamplighter groups have "deep pockets." This property can depend on genset.
- ► **Retreat depth**: how large must *d* be for *g* to be in an unbounded component of the complement of B_{n-d} ?
- ► Lamplighters also have unbounded retreat depth.

- ► **Dead end depth**: distance from *g* to nearest longer *g*'.
- Hyperbolic groups, Euclidean groups, and groups with more than one end all have bounded dead end depth. But lamplighter groups have "deep pockets." This property can depend on genset.
- ► **Retreat depth**: how large must *d* be for *g* to be in an unbounded component of the complement of B_{n-d} ?
- ► Lamplighters also have unbounded retreat depth.
- Theorem (Warshall): H has unbounded dead ends but bounded retreat depth in any genset.

► **Dead end depth**: distance from *g* to nearest longer *g*'.

- Hyperbolic groups, Euclidean groups, and groups with more than one end all have bounded dead end depth. But lamplighter groups have "deep pockets." This property can depend on genset.
- ► **Retreat depth**: how large must *d* be for *g* to be in an unbounded component of the complement of B_{n-d} ?
- ► Lamplighters also have unbounded retreat depth.
- Theorem (Warshall): H has unbounded dead ends but bounded retreat depth in any genset.
- (But 25 pages of combinatorics can be replaced with a quick hit of CC geometry.)

.

The equation problem: is there an algorithm that can decide whether solutions exist in a group to an equation given in constants and variables? A system of equations? A system of equations and inequations?

- The equation problem: is there an algorithm that can decide whether solutions exist in a group to an equation given in constants and variables? A system of equations? A system of equations and inequations?
- ► Theorem (D-Liang-Shapiro):

- The equation problem: is there an algorithm that can decide whether solutions exist in a group to an equation given in constants and variables? A system of equations? A system of equations and inequations?
- ► Theorem (D-Liang-Shapiro):
 - ★ Single equations are **decidable** in $H=N_{2,2}$.

- The equation problem: is there an algorithm that can decide whether solutions exist in a group to an equation given in constants and variables? A system of equations? A system of equations and inequations?
- ► Theorem (D-Liang-Shapiro):
 - ★ Single equations are **decidable** in $H=N_{2,2}$.
 - ★ Systems of equations are **undecidable** in *H* and all $N_{s,m}$, $s \ge 2$.

- The equation problem: is there an algorithm that can decide whether solutions exist in a group to an equation given in constants and variables? A system of equations? A system of equations and inequations?
- ► Theorem (D-Liang-Shapiro):
 - ★ Single equations are **decidable** in $H=N_{2,2}$.
 - ★ Systems of equations are **undecidable** in *H* and all $N_{s,m}$, $s \ge 2$.
- Proof: use Mal'cev coordinates to reduce solvability to solving a quadratic equation over a lattice. OTOH, show that systems can encode arbitrary polynomials and quote Hilbert's 10th problem!

MERCI