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➤ ≤ s-step nilpotent ⟺ (s+1)-fold commutators are killed
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➤ Generally, nilpotent means LCS gets to {1} in s steps

➤ Other examples:  higher Heis H2k+1; free nilpotent groups Ns,m

➤ The unitriangular groups UTN(ℤ) are nilpotent because addition is additive 
on the first nonzero superdiagonal, so taking nested commutators will 
terminate in at most N-1 steps

➤ conversely: every fin-gen torsion-free nilpotent group embeds in some UTN(ℤ)

➤  This goes through a Lie group fact:  every simply connected nilpotent group is 
isomorphic to a Lie subgroup of some UTN(ℝ)

(proved by embedding the Lie algebra into strictly upper△s)

=
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➤ Multiple ways to coordinatize.  (a) matrix entries; (b) normal 
form aAbBcC; (c) exponential coordinates

linear linear quadratic

Theorem (deKimpe 2013): if ℤn or ℝn has a group structure in 
which multiplication is polynomial, then it is a nilpotent group.

all three 
generalize! 

cf: Mal’cev 
theory
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Amazing fact:  
this characterizes 

Carnot groups!
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➤ One way to be geodesic: your shadow is a norm geodesic.
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➤ Let’s call these “beelines” and “area grabbers.”
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geodesic unit sphere

8 types of 
area-grabbers

note: walls are cut 
away to see inside 
—it’s a topological 

sphere!
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➤ But in polygonal norms, the beelines can enclose area, and the 
area-grabbers come in different combinatorial types

8 types of 
area-grabbers 
in L1

24 types of 
area-grabbers 
in Hex

Plot of area enclosed by geodesics gives 
unit sphere as piecewise-quadratic graph

There are flat vertical “walls” coming from 
the beelines (range of areas for same endpoint)
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Thurston’s eight 3D “model geometries”:   

ℝ3,   S3,   ℍ3,   S2×ℝ,   ℍ2×ℝ,   Nil,   Sol,   and   SL(2,ℝ) 

➤ Nil is H(ℝ)with its sub-Riemannian metric.

➤ Complex hyperbolic space ℂℍ2:  horospheres have Nil geometry.

➤ Higher-dimensional ℂℍn: horospheres are higher Heisenberg 
groups.
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SHAPES OF BALLS AND SPHERES

➤ Pansu is telling you that CC spheres are a close approximation to 
spheres in the word metric.

Hex

➤ Should still wonder:  are CC geodesics good approximations of 
geodesics in the word metric? 

➤ The CC group is divided into two parts(the beelines/walls and the 
area-grabbers/roof).  What about the discrete group?
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GROMOV’S ASK:  CC SPACES “FROM WITHIN”

➤ What are the qualitative features of a CC metric?  How would 
you know you are in one?

★ There’s a family of dilations.

★ Non-unique geodesics.

★ Many dead ends.

★ …

➤ How about polygonal CC metrics on H?
★ Visually, from a basepoint, space is divided up into two regimes 

(walls and roof), with rational proportion:  many “p/q laws.”  
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GROWTH OF GROUPS

Motivating example: The group ℤ2 has standard generators (±1,0),
(0,±1).  There are also non-standard generators, like the chess-knight 
moves (±2,±1),(±1,±2).

Fundamental question:  How many group elements are “spellable” 
in ≤n letters from the generating alphabet?  

We can write βn=#Bn,   𝜎n=#Sn for the point count of balls and spheres 
in the word metric.  As functions of n, these are called growth 
functions of (G,S) for a group G and generating set S.
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Growth functions depend on generators (G,S), but change of genset 
preserves growth rate, so polynomiality (and degree) is an invariant of 
G, and so is exponential growth.

One key tool used to study growth functions is their associated 
generating functions:  treat 𝜎(n) as sequence 𝜎n and study 𝕊(x)=∑𝜎nxn.  

Fact: 𝜎(n) satisfies a Fibonacci-style recursion iff 𝕊(x)∈ ℚ(x).

“Ehrhart polynomials”
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THEOREMS ABOUT RATIONALITY

➤ Many groups are known to have rational growth in a special generating 
sets, e.g. Coxeter groups (exercise in Bourbaki!)

Theorem (Cannon, Thurston, Gromov): Hyperbolic groups have rational 
growth in any generators.

Theorem (M.Benson 1983): Virtually abelian groups have rational growth 
in any generators.  

Theorem (Shapiro, Benson 1980s): H(ℤ) has rational growth in standard 
generators.

Theorem (Stoll 1996): H5 has rational growth in one generating set but 
transcendental in another!  



SUMMARY OF RATIONALITY RESULTS

➤ Many more in middle category: some more BS(p,q) examples 
plus “higher BS groups,” quotients of triangular buildings, 
some amalgams and wreath products, some solvable groups, 
relatively hyperbolic groups, …



CANNON 1984, BEING ZEN ABOUT GROUPS

➤ “We shall… show that the global combinatorial structure of such 
groups is particularly simple in the sense that their Cayley group 
graphs (Dehn Gruppenbilder) have descriptions by linear recursion. 
We view this latter result as a promising generalization of small 
cancellation theory… The result also indicates that cocompact, 
discrete hyperbolic groups can be understood globally in the 
same sense that the integers ℤ can be understood: feeling, as we do, 
that we understand the simple linear recursion n→ n+1 in ℤ, we 
extend our local picture of ℤ recursively in our mind’s eye 
toward infinity.  One obtains a global picture of the arbitrary 
cocompact, discrete hyperbolic group G in the same way: first, one 
discovers the local picture of G, then the recursive structure of G by 
means of which copies of the local structure are integrated.”



RELATING GROUP GROWTH TO LATTICE COUNTING

Let’s go back and see why lattice counts and Ehrhart polynomials were 
related to growth functions for ℤ2.  You can get a coarse estimate of βn 
by figuring out the shape of the cloud of points Bn and counting lattice 
points inside it.



WORD METRICS HAVE “LIMIT SHAPES” YOU CAN COUNT WITH

To see that you get an accurate first-order 
estimate from the Ehrhart polynomial, it 
suffices to show that almost all lattice points 
in the nth dilate are reached in n steps. 

This works well here; in general, the large 
spheres very closely resemble an annular shell 
at the boundary of your defining polygon.

S3 S6 S20
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COUNTING IN THE HEISENBERG GROUP 

Theorem (Shapiro, Benson 1980s): The spherical growth of H(ℤ), std is  

𝜎n=(31n3–57n2+105n+cn)/18,  

where cn=-7, -14, 9, -16, -23, 18, -7, -32, 9, 2, -23, 0, repeating with period 12, 
for n ≥ 1. 

Theorem (D-Shapiro arXiv): For any Heisenberg generators, the group growth 
function is eventually quasipolynomial.

Theorem (D-Mooney 2014): For any Heisenberg generators, the number of 
lattice points in CC balls is quasipolynomial.

(not just bounded above and below like An3≤𝜎n≤Bn3, which is classical) 

This is called a quasipolynomial.  Fact: if a sequence is polynomially 
bounded, then it has rational growth iff it is eventually quasipolynomial.



GAME PLAN FOR HEISENBERG PANRATIONALITY

➤ We produce a finite collection of languages that we call shapes 
and patterns that surject onto H.   

➤ We show that there are “rational competitions” that 
determine a single shape or pattern as the “winner” for each 
group element.   

➤ We show that enumerating the winning spellings by length is 
a rational function for each shape and pattern. 

➤ Conclusion:  overall growth function is a sum of finitely many 
rational functions, so it is rational.
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MOTIVATING EXAMPLE:  KNIGHTS ON AN INFINITE CHESSBOARD

➤ Consider ℤ2 with chess-knight generators {(±2,±1),(±1,±2)}.  
Let a1=(2,1), a2=(1,2), and so on clockwise to a8.

➤ Many elements in the sector 0≤y/2≤x≤2y bounded by a1,a2 
can be written as linear combinations of those, but not all.  
For instance, (1,1)=a3 a8 and (2,2)=a32 a82 are geodesic.

➤ For that sector, 3 patterns suffice:  

★ a1* a2* 

★ a3 a8 a1*a2* 

★ a32 a82 a1*a2*
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➤ The patterns can be treated as functions ℕ2→ℤ2 or as affine 
functions to position and length.

★ v=a1* a2*   has length p+q, position (2p+q,p+2q)

★ w=a3 a8 a1*a2* has length p+q+2, position (2p+q+1,p+2q+1)

★ x=a32 a82 a1*a2* has length p+q+4, position (2p+q+2,p+2q+2)

➤ When does each one “win” to express a point (a,b)?  Depends 
on congruence class of a+b (mod 3).  

➤ Let Gw(n)={(a,b): w is smallest-indexed pattern to reach (a,b) in 
length n; no pattern reaches (a,b) in length <n}

➤ Here, Gw(n)={(n-1,2n-3),…,(2n-3,n-1)} for n≥2.  



MAJOR TOOL: COUNTING IN POLYHEDRA

➤ Let an elementary family {E(n)} in ℤd be defined by finitely many 
equalities, inequalities, and congruences as below, where the b are 
affine in n.  

➤ A bounded polyhedral family {P(n)} 
is a finite union of finite intersections 
of these in which each P(n) is 
bounded. 

➤ Theorem (Benson): if f: ℤd→ℤ is polynomial and {P(n)} is a 
bounded polyhedral family, then 

is a rational function.

x+y=3n+1; 
x, y, y-x/2, 2x-y  all  ≥0

Gw(n) from chess example:
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APPLICATION: HEISENBERG LATTICE COUNTING

Theorem (D-Mooney 2014): For any Heisenberg generators, the number of 
lattice points in CC balls is quasipolynomial.

How to see this:  Let the height of the sphere over a point in xy plane be 
f(a,b); this is a quadratic polynomial on each quadrilateral region R of 
the footprint.  Then the lattice point count in ẟnℬ is given by

F(x)= ∑  ∑    ∑       n2  f(a/n,b/n) xn

(a,b)∈ nRn R
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➤ Recall that Gw(n) is the set of (a,b) where w is the winning 
pattern expressing (a,b) geodesically at length n.
★ e.g., for w=a3 a8 a1*a2* , we had Gw(n)={(n-1,2n-3),…,(2n-3,n-1)}, n≥2. 

➤ Then the sum over w of |Gw(n)| will equal 𝜎n, because it adds 
up the total number of positions reached geodesically at 
length n.  Equivalently, we sum 1 over Gw(n).

APPLICATION: CHESS-KNIGHT RATIONALITY

𝕊(x)=∑ 𝜎n xn = ∑  ∑   ∑  xn

Gw(n)n n w
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➤ Balancing Lemma: Busemann’s polygon is isoperimetrically 
optimal, and area falls off quadratically when you unbalance 
the sidelengths.

➤ Shape Lemma: every group element in the “roof” can be 
geodesically represented by something that fellow-travels an 
area-grabber CC geodesic.

➤ Pattern Lemma: every group element in the “walls” can be 
geodesically represented by something that fellow-travels a 
beeline CC geodesic.  

➤ Competition Lemma: a winning shape or pattern for each 
(a,b) position is determined by finitely many linear equalities, 
inequalities, and congruences.
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➤ There exist word geodesics that don’t 
fellow-travel any CC geodesic!  But every 
group element is represented by some word 
geodesic that does.  We prove this 
algorithmically, by starting with an arbitrary 
word geodesic and “balancing” it at the 
same total length.

➤ The length and (a,b) position of a shape are affine functions of the 
inputs, but the height (c coordinate) is quadratic.  

➤ This is a big problem for writing down which group elements are 
represented by a shape: the rational competition doesn’t allow you to 
check a quadratic equation.  Cute idea to get around this:  when two 
shapes compete, the difference in their heights is a linear polynomial, so 
you ascertain that they reach the same height by checking linear=0.
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…et voilà.

shapes slack in 
the length

length

patterns

positions 
(a,b) at which 
shape wins

slacklength positions (a,b)

quadratically many c 
reached winningly
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➤ What is the average distance between two points on a sphere?

➤ Let E(X)=lim 1/n avg d(x,y).  Note E≤2 by triangle inequality.

➤ Theorem (D-Lelièvre-Mooney): If X is a non-elementary 
hyperbolic group with any genset, then E=2.  

➤ We get:  all nilpotent groups have E<2.  Proof: CC sphere 
carries a limit measure that is absolutely continuous with 
Lebesgue, so there are positive-measure patches with d(x,y) 
bounded away from 2n.

x,y ∈ Snn
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➤ Dead end depth:  distance from g to nearest longer g’.

➤ Hyperbolic groups, Euclidean groups, and groups with more than one 
end all have bounded dead end depth.  But lamplighter groups have 
“deep pockets.”  This property can depend on genset.

➤ Retreat depth:  how large must d be for g to be in an unbounded 
component of the complement of Bn-d?

➤ Lamplighters also have unbounded retreat depth.

➤ Theorem (Warshall): H has unbounded dead ends but bounded retreat depth 
in any genset.

➤ (But 25 pages of combinatorics can be replaced with a quick hit of CC 
geometry.)
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EQUATION-SOLVING IN GROUPS

➤ The equation problem:  is there an algorithm that can decide whether 
solutions exist in a group to an equation given in constants and 
variables?  A system of equations?  A system of equations and 
inequations?

➤ Theorem (D-Liang-Shapiro): 

★ Single equations are decidable in H=N2,2.

★ Systems of equations are undecidable in H and all Ns,m , s≥2.

➤ Proof: use Mal’cev coordinates to reduce solvability to solving a 
quadratic equation over a lattice.  OTOH, show that systems can 
encode arbitrary polynomials and quote Hilbert’s 10th problem!
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