Privacy, Census Data, and Arizona Redistricting

an overview with experiments

Moon Duchin MGGG Redistricting Lab Tisch College of Civic Life, Tufts University

About MGGG Redistricting Lab

- Non-partisan scholarly research
- Community mapping support
- Map evaluation

Main funder: National Science Foundation ("Network Science of Census Data")

Differential privacy study funded by Alfred P. Sloan Foundation – joint work with Aloni Cohen, JN Matthews, and Bhushan Suwal, in collaboration with Mark Hansen, Denis Kazakov, and Peter Wayner

Large districts (U.S. Congress)

7,151,502/9 ≈ 794,611

Small districts (Navajo County commission)

 $107,449/5 \approx 21,490$

Pima County, pop. 980,263

55%W, 35%H, 2.5%AMIN

Navajo County, pop. 107,449

44%W, 11%H, 42%AMIN

Both counties have significant diversity

AMIN population in Pima County

Hispanic population in Pima County

AMIN population in Navajo County

What is the risk?

Reconstructing Navajo County

in <6 hours on a student-grade laptop, we recovered a complete person-byperson list of location, ethnicity, sex, age, race for every enumerated resident of Navajo County in 2010

can get whole state in a few days

our table is **100% consistent** with the aggregate numbers released by the Census

(the only inaccuracies come from the existence of multiple solutions)

pairs with easily obtained commercial data to get full reidentification

census_ap	i_test.ipynb M	CensusModel.fs	uctr.fspro
reconstr	ructr# > results >	04017965300_output.csv	
1	GEOID, ETHN, SE	EX, AGE, RACE, SOL	
2	040179653001055	5, NH, M, Yrs 57, WHITE, 2.000000	
3	040179653001055	5, NH, M, Yrs 60, WHITE, 1.000000	
4	040179653001055	5, NH, F, Yrs 52, WHITE, 2.000000	
5	040179653001124	H, H, M, Yrs 5, OTHER, 1.000000	
6	040179653001124	4, H, M, Yrs 33, OTHER, 1.000000	
7	040179653001124	H, H, F, Yrs 10, OTHER, 1.000000	
8	040179653001124	4, H, F, Yrs 34, WHITE, 1.000000	
9	040179653001124	A, NH, M, Yrs 3, WHITE, 1.000000	
10	040179653001124	A, NH, M, Yrs 21, WHITE, 1.000000	
11	040179653001124	4, NH, M, Yrs 27, WHITE, 2.000000	
12	040179653001124	4, NH, M, Yrs 32, WHITE, 1.000000	
13	040179653001124	A, NH, M, Yrs 37, WHITE, 2.000000	
14	040179653001124	4, NH, M, Yrs 42, WHITE, 1.000000	
15	040179653001124	4, NH, M, Yrs 47, WHITE, 1.000000	
16	040179653001124	4, NH, M, Yrs 52, WHITE, 3.000000	
17	040179653001124	4, NH, M, Yrs 55, WHITE, 3.000000	
18	040179653001124	4, NH, M, Yrs 61, AMIN, 1.000000	
19	040179653001124	4, NH, M, Yrs 61, WHITE, 2.000000	
20	040179653001124	4, NH, M, Yrs 72, WHITE, 1.000000	
21	040179653001124	4, NH, M, Yrs 90, WHITE, 1.000000	
22	040179653001124	4, NH, F, Yrs Ø, WHITE, 1.000000	
23	040179653001124	4, NH, F, Yrs 8, WHITE, 1.000000	
24	040179653001124	4, NH, F, Yrs 11, WHITE, 1.000000	
25	040179653001124	4, NH, F, Yrs 15, WHITE, 1.000000	
26	040179653001124	4, NH, F, Yrs 27, WHITE, 3.000000	
27	040179653001124	4, NH, F, Yrs 42, WHITE, 1.000000	
28	040179653001124	4, NH, F, Yrs 47, WHITE, 1.000000	
29	040179653001124	4, NH, F, Yrs 52, WHITE, 3.000000	
30	040179653001124	4, NH, F, Yrs 59, WHITE, 2.000000	
31	040179653001124	4, NH, F, Yrs 61, WHITE, 1.000000	
32	040179653001124	4, NH, F, Yrs 64, WHITE, 1.000000	
33	040179653001124	4, NH, F, Yrs 69, WHITE, 1.000000	
34	040179653001124	4, NH, F, Yrs 75, WHITE, 1.000000	
35	040179653001124	4, NH, F, Yrs 86, WHITE, 1.000000	
36	040179653001125	5, H, M, Yrs 13, WHITE, 1.000000	
37	040179653001125	5, NH, M, Yrs 3, WHITE, 1.000000	
38	040179653001125	NH, M, Yrs 6, WHITE, 1.000000	
39	0401/9653001125	, WH, M, YFS 10, WHITE, 1.000000	
40	0401/9653001125	, WH, M, YFS 19, WHITE, 1.000000	
41	0401/9053001125	NH, H, TTS 24, WHITE, 1.000000	
42	0401/9053001125	NH, H, TTS 34, WHITE, 2.000000	
st': conda)	× 0 A 0 & cs	v / v 04017965300 output.csv CSVL int	Query
(and a strate)	0	and a second and a second and a second	4.00.9

What is differential privacy?

Idea: for privacy, add noise

make the numbers fuzzier so exact reconstruction is impossible

we'll draw random numbers to add to every count in the Census redistricting release (PL 94-171)

"differential privacy" essentially means that you have control over the knobs – can **calibrate** the tradeoff between privacy and accuracy

Census "TopDown" algorithm

two main things to know:

- (1) it uses the geographical hierarchy, from top to bottom
- (2) after adding random noise, there's a processing phase to make the numbers satisfy various plausibility constraints

county subunits

let's see some

experiments

we'll use a simplified model called "ToyDown" — see <u>mggg.org/dp</u>

Do districts lose Native population?

population distortions already very small (half percent) with $\varepsilon = 1, 2$...truly tiny at $\varepsilon = 19$

$\varepsilon = 1, 2, 19$

k=5 districts, population 20K

these plots show the discrepancy introduced by top-down style differential privacy

we made 100 random districts and noised them 16 times, then measured the error in the American Indian/Native American population total

even with $\varepsilon = 1$, the typical discrepancy is under 500

with $\varepsilon = 19$, the typical discrepancy is **under 5 people**

built from blocks vs. block groups

k=5 districts, population 20K

these plots show the discrepancy introduced by top-down style differential privacy

we made 100 random districts and noised them 16 times, then measured the error in the American Indian/Native American population total

construction matters!

far better accuracy on districts built from larger pieces

Do districts change their overall racial composition?

we will noise these 16 times with $\varepsilon = 2$ and equal allocation over the geographical levels

random district #13

random district #2

random district #9

random district #46

OTHER

OTHER

OTHER

random district #13

OTHER

OTHER

random district #46

WHITE 50.79

WHITE

OTHER

OTHER

OTHER

Can we identify racially polarized voting?

blue: un-noised pink dots: noisy data red lines: lines fit to noisy data

the nightmare scenario

adding noise loses the signal of racially polarized voting

might be unable to test merit of VRA claims

Pima County

AMIN support for Biden

Pima County

HISP support for Biden

Pima County

W support for Biden

AMIN support for Biden

HISP support for Biden

W support for Biden

noised 16 times with $\varepsilon = 2$ and equal allocation over the geographical levels

	Hispanic for Biden	non-Hisp for Biden
	66.3%	57.2%
rials	65.3%	57.2%
rials	66.3%	57.5%

noised 16 times with $\varepsilon = 2$ and equal allocation over the geographical levels

	AMIN for Biden	non-AMIN for Biden	
	88.4%	17.0%	
rials	88.7%	16.7%	
rials	89.2%	17.0%	

How realistic are these experiments?

We studied DP for a year using Census code from July 2019

end-user pushback

- **TopDown** instead of **ToyDown** more accurate overall
- Gaussian vs Laplace noise noise has thinner "tails"
- "Optimized block groups" will fit cities/towns better
- Tuned workload and invariants leverages household, other structure

All of these make discrepancies substantially smaller!

- Since then, Bureau has announced many details/changes, some in response to

Takehome messages

The privacy risks are real

hoc, and underpowered

adequate for every redistricting application we studied

Our study suggests some updated best practices for redistricting

- Build from bigger units
- Weight your regressions
- Time to break zero-balance habit?

- The previous disclosure avoidance methods (e.g., "swapping") are opaque, ad
- For each geography we considered, the Census data will clearly be completely
- We find no threat to VRA enforcement or to reasonable population balance

