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Abstract. We propose a new family of metrics called capy (or clustering propensity) scores,
designed to measure the clustering level of one or more subgroups within a population. The intended
application is to offer new ways of measuring the segregation of demographic subgroups. We discuss
two main capy scores, Edge and HalfEdge (as well as weighted variants of each) and we compare
them to existing segregation scores in the political science, geography, and network science literature.
To evaluate the scores, we compute and plot values of minority proportion ρ vs. clustering score
C for test distributions on large n × n grids, and on actual demographic data from U.S. states
and cities. We argue that capy scores successfully discern qualitatively important differences while
providing a stabler baseline for interpretation than classic scores like the Dissimilarity Index and
Moran’s I.
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1. Introduction

1.1. Background and goals. In this paper we present a family of “clustering propensity" scores
that in part unites and in part adds to segregation and assortativity scores that already exist in
the geography and network science literature. The goal is to present numerical tools for describing
aspects of spatial distribution of populations that can help inform policy considerations.

We have set up the problem as follows: given a region of interest that has been partitioned into
geographic units (such as census tracts or precincts), we construct a dual graph that records the
geographic and demographic information. These dual graphs are flexible network structures that
allow for mathematical analysis of spatial population distributions, which in turn leads to a very
general framework for measuring segregation.

To analyze performance, we will consider a suite of questions aimed at evaluating whether a pro-
posed score has adequate discernment and stability. That is, scores should offer a stable numerical
baseline: similar scores should mean something qualitatively similar across scenarios; in particu-
lar, scores should not be heavily or chiefly sensitive to a non-pattern-related variable like city size,
minority share, or choice of units. The units issue—in which changing the aggregation level has a
drastic impact on output—is well known in the geography literature as a MAUP, or Modifiable Areal
Unit Problem. Avoiding undue sensitivity to factors that are in some sense orthogonal to clustering
or segregation will give us grounds to prefer capy scores to some classical alternatives. And at
the same time, we will prefer scores that register meaningful qualitative differences in segregation
scenarios.

This direction of investigation was motivated by the study of electoral redistricting. Demographic
clustering has a major impact on political representation under the system of single-member dis-
tricts that dominates the United States electoral scene. This is even made explicit in the checklist of
features that must be established to bring a lawsuit under the Voting Rights Act of 1965—litigants
must demonstrate that a minority group is “sufficiently large and geographically compact to con-
stitute a majority in a single-member district” in order to press a claim that the group has been
denied rightful representation.1 This phrasing acknowledges legally what is mathematically clear:
the size of a minority population alone, without sufficient spatial clustering or "compactness," is
not enough to guarantee that the group can secure representation in a districted system. We were
motivated by wanting to measure clustering with tools compatible with statistical physics models,
like the Ising model, that would allow us to design dynamical systems to intensify and relax the
level of clustering and study the representational consequences. The intimate relationship between
segregation and district-based representation will be discussed in future work.

2. The theoretical framework of capy scores

2.1. Geographical units and dual graphs. We begin by setting up definitions and notation to
treat a city, state, or any other jurisdiction as a graph decorated with relevant demographic data.
In our examples, we will use geographical units from the census, such as census tracts or census
blocks, that partition the jurisdiction into pieces. The dual graph of a geographical partition is the
graph formed by using a vertex (or node) to represent each unit, then connecting two vertices by an
edge if the geographical units are adjacent. We can either adopt edges for rook adjacency (in which
the shared boundary has to have positive length) or queen adjacency (in which we count units as
being adjacent even if they just meet at a point). This is illustrated below in Figure 1.

At each node we can record demographic information for the geographic unit, including the total
population and racial breakdown, based for instance on census data. The geographical units that
make up a jurisdiction have populations of different sizes and compositions. Suppose we have two

1In the VRA literature, this is called the Gingles 1 test. See Thornburg v. Gingles, 478 U.S. at 50, 1986.
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dual graph
(rook)

dual graph
(queen)

Figure 1. On the left is a partition of a region into five units. The middle and
righthand figures represent dual graphs of this partition, where the middle figure has
used rook adjacency and the righthand figure uses queen adjacency.

types of population, X and Y, such as Black and White residents.2 If the nodes of the dual graph
are denoted vi, then we can record integer-valued populations xi and yi in each unit, with total
population pi at the ith node. We may have pi = xi + yi if each population member is classified
in group X or group Y, or there may be other groups in the population. We will record the X
population data as a vector x : V → Z, and likewise write y for the Y population figures. For
example, Figure 6 shows the dual graph of the 99 counties in Iowa. The sizes of the nodes in the
figure reflect 2010 Census population of the counties, which in fact varies by more than two orders
of magnitude, from a minimum of 4029 to a maximum of 430,640.

The total population of a jurisdiction will be denoted p̄ =
∑

i pi, and likewise x̄ and ȳ represent
the total number of residents of X or Y type, respectively. We will introduce the notation ρ = x̄/p̄
to represent the proportion of population X in the population at large, so that 0 ≤ ρ ≤ 1. Since we
typically focus on a population in the numerical minority, most of the plots will have 0 ≤ ρ < 1/2.

2.2. The exploded graph and an inner product expression. We would like to measure the
extent to which people of population X tend to live next to other people of population of X, rather
than next to people of population Y. So we will classify within-unit adjacencies as well as adjacencies
between neighboring units. There are scores for this in the literature when each node corresponds to
a single person, but we have not found existing segregation scores that handle arbitrary percentages
at each node of a network.

In the network science and applied mathematics literature, authors sometimes consider construc-
tions that aggregate and disaggregate nodes in graphs; that is, a graph can be modified by collapsing
a subgraph to a node, or by replacing a node with an appropriate subgraph. We will describe a
massively disaggregated secondary graph associated to our dual graph which we call the exploded
graph. We expand each node vi into a complete graph (or clique) Kpi on pi nodes such that exactly
xi are of X type. If two nodes vi and vj are adjacent in the initial dual graph, then the exploded
graph contains pi·pj edges between the members of the respective cliques. This graph has an enor-
mous number of nodes (one for each person in the jurisdiction) and edges, but it is a theoretical
construction that we use to explain the logic of the main definitions; we note that the exploded
graph never has to be built or stored.

We can define two expressions as follows:

〈x,y〉 :=
∑
i

xiyi +
∑
i∼j

xiyj + xjyi ;

〈〈x,y〉〉 :=
1

2

∑
i

(
xiyi −

xi + yi
2

)
+
∑
i∼j

xiyj + xjyi

 .

2We note that census data includes a count of Black-only population and White non-Hispanic population, among
many other racial classifications, including membership in more than one racial group. Census classification allows
researchers to treat racial categories as though they are much more stable and clear than the social reality.
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x1 = 4

y1 = 3

x2 = 2

y2 = 2

Figure 2. This figure shows the exploded graph associated to an initial graph with
x = (4, 2), y = (3, 2), and no other type of population. Here, the exploded graph
has 〈x,y〉 = 30 edges between different-colored nodes, 〈〈x,x〉〉 = 15 edges between
X nodes, and 〈〈y,y〉〉 = 10 edges between Y nodes, making 55 edges in all. The
proportion of X population in the jurisdiction is ρ = 6/11.

Here in both expressions the first summation is over all the nodes, and the second is over pairs of
adjacent nodes. Note that the number of edges between populations X and Y within the clique
associated to vertex i is xiyi, which means that 〈x,y〉 is a precise count of the edges of XY type
when X and Y are disjoint populations. On the other hand, the number of edges between two people
of population X is (

xi
2

)
=
x2
i − xi

2
,

so 〈〈x,x〉〉 simplifies to a precise count of the number of edges of XX type.
We note another relationship between these expressions. Since quadratic terms dominate linear

terms when the xi and yi are large, we get 〈x, y〉 ≈ 2〈〈x, y〉〉 for large populations.
Observe that 〈x, y〉 is an inner product, so it has a nice representation in terms of matrix multi-

plication. Letting A be the adjacency matrix of the dual graph, we have

〈x,y〉 = xT (A+ I)y.

2.3. Measuring clustering propensity. With the information above, we can define clustering
propensity scores on the exploded graphs which have a clear probabilistic interpretation.

We can use this to define a one-sided score of the skew via

Skew(x,y) :=
〈x,x〉

〈x,x〉+ 2〈x,y〉
=

〈x,x〉
〈x, x + 2y〉

.

Using the fact that 〈x,y〉 ≈ 2〈〈x,y〉〉, we see that the skew is approximately 〈〈x,x〉〉
〈〈x,x〉〉+〈x,y〉 , which is

the ratio of the number of XX edges to the number of edges of either XX or XY type. In other
words, among the edges that connect X population to either X or Y population, it records the share
of XX edges. This measures the prevalence of X living next to X rather than Y, weighted by edges.

Therefore to devise a score of the clustering propensity between populations X and Y from an
edge point of view, we can average the X and Y skews, arriving at the edge capy score

(1) Edge(x,y) :=
1

2

(
〈x,x〉

〈x,x〉+ 2〈x,y〉
+

〈y,y〉
〈y,y〉+ 2〈x,y〉

)
Note that the score can be extended to compare the clustering of multiple disjoint sets, such as with

Edge(x,y, z) =
1

3

(
〈x,x〉

〈x,x〉+ 2〈x,y〉+ 2〈x, z〉
+

〈y,y〉
〈y,y〉+ 2〈x,y〉+ 2〈y, z〉

+
〈z, z〉

〈z,y〉+ 2〈x, z〉+ 2〈y, z〉

)
,

and so on to arbitrarily many populations.
However, if we want to reframe this as a propensity in terms of the vertices (the people) rather

than the edges (the adjacencies of people), it is more natural to set up the ratio in terms of half-edges
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rather than edges. A half-edge is a vertex-edge pair (v, e) in which edge e is incident to vertex v.
The share of X type half-edges which belong to an XX edge is 2〈〈x,x〉〉

2〈〈x,x〉〉+〈x,y〉 , which is asymptotic to

Skew′(x,y) =
〈x,x〉

〈x,x〉+ 〈x,y〉
.

This has the intuitively appealing interpretation as the probability that a neighbor of an X person
is another X person rather than a Y person. Accordingly, we define the half-edge capy score to be

(2) HalfEdge(x,y) :=
1

2

(
〈x,x〉

〈x,x〉+ 〈x,y〉
+

〈y,y〉
〈y,y〉+ 〈x,y〉

)
,

noting that it can just as easily be extended to more than two populations.
This will be the clustering propensity score that receives our strongest focus in this paper: it av-

erages the average tendency of each subgroup of population to have members of their own subgroup,
and not the other, as neighbors.

2.4. Within-unit and between-unit weighting. A natural variant on these scores is to weight
the connections within geographical units differently than those between neighboring units. To
accomplish this, we choose λ ≥ 0 and set

〈x,y〉λ := λ

(∑
i

xiyi

)
+
∑
i∼j

xiyj + xjyi.

With this, we can simply repeat the formulas for clustering scores using the weighted inner
products, such as

HalfEdgeλ(x,y) :=
1

2

(
〈x,x〉λ

〈x,x〉λ + 〈x,y〉λ
+

〈y,y〉λ
〈y,y〉λ + 〈x,y〉λ

)
.

In this way, any normalization factor one might introduce for 〈 , 〉λ cancels out of the numerator
and denominator, and we obtain a score that weights the two kinds of neighbors differently.

For instance, if one is working with geographical units that are chosen in part for their social
unity, such as census tracts, then it would be reasonable to weigh the within-tract adjacencies
more heavily than those between neighboring tracts, such as by taking λ = 2 or λ = 5. If the
units are counties, then there are some states in which people identify strongly with their county,
such as Texas, and other states in which most people don’t know what county they live in, such
as Massachusetts. Some choice of λ-weighting could then be appropriate for studies of changing
segregation over time in Texas.

Note that as λ→∞, the vertex terms dominate the weighted terms, so that in the limit we have
limλ→∞〈x, y〉λ =

∑
i xiyi. This defines the following weighted capy scores in the limit, defined by

summing over the geographical units.

HalfEdge∞(x,y) =
1

2

( ∑
x2
i∑

xi(1 + xiyi)
+

∑
y2
i∑

yi(1 + xiyi)

)
.

Of course, because the interaction between neighboring nodes has been dropped out, this becomes
a node-based score (i.e., ignoring edges) like several classical scores discussed in the next section
(§3.1).

3. Comparison to existing literature

We will survey some of the numerous existing segregation scores in the social science and applied
mathematics literature, translating them into the notation of this paper for ease of comparison. Re-
call that p is the vector of population at each node, and x̄, ȳ, p̄ are the jurisdiction-wide populations
of X type, Y type, and all residents, respectively. We also have ρ as the jurisdiction-wide proportion
of X population, and ρi = xi/pi the proportion at node i.
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3.1. Node-based scores: Dissimilarity, Frey, and Gini. The segregation literature has three
major scores that have been described as measuring “evenness,” or the consistency of the levels of
a sub-population over the units that make up a jurisdiction.

D(x) =
1

2x̄(p̄− x̄)

∑
i

|xip̄− pix̄| ; F (x,y) =
1

2x̄ȳ

∑
i

|xiȳ − yix̄| ;

G(x) =
1

2x̄(p̄− x̄)

∑
i,j

|xipj − pixj | .

These are called the Dissimilarity score, the Frey index, and the segregation Gini index, respectively.
We note that all three are based on a similar determinant-like expression: |vw′ − wv′| can be
interpreted as twice the area of the triangle described by vector (v, w) and vector (v′, w′), as in
Figure 3.

(v′, w′)

(v, w)
A = 1

2 |vw
′ − wv′| = 1

2

∣∣ v v′

w w′

∣∣

Figure 3. This area term is only zero if the vectors point the same direction, which
occurs when there is an equality of ratios: v

w = v′

w′ .

So all three of these formulas, while set up slightly differently from one another, measure how
even the distribution of population X is:

• D(x) measures how closely the unit proportions ρi = xi
pi

line up with the citywide proportion
ρ = x̄

p̄ ;
• F (x,y) measures how nearly two groups X and Y have equal proportion of each unit’s
population;
• G(x) looks over all pairs of units and measures how nearly ρi = ρj .

The determinental interpretation of the scores makes it easy to see that D(x) = F (x,p− x), so
Frey’s index can be seen as a generalization of dissimilarity to pairs of (not necessarily complemen-
tary) populations.3

Dissimilarity and this Gini score (which borrows its name from the more famous area-based index
of wealth distribution) are among the 20 segregation scores discussed in the classic Massey–Denton
survey of segregation indices [8]. This or very similar formulations of Dissimilarity go back to at
least the 1950s and have been much used and discussed since then (see [2, 5, 8] and their references).

Note that each of these three scores is given by summing over the nodes without reference to
adjacency, none of them can take into account the spatial relationship between geographic units, so
they all treat neighboring units no differently than units on opposite sides of a city.

3.2. Spatial scores in the geography literature, including Moran’s I. Many authors in the
geography literature have attempted to modify these scores to take spatial relationships between
units into account by “spatial weighting,” which can be set up to take into account when units are
adjacent, or within a fixed distance, or simply to upweight pairs of units when they are relatively
closer or share longer boundary segments. For instance Dawkins in two papers in the 2000s [3, 4]
provides spatialized variants of the Gini score from the last section.

3In the papers of Frey, the index we call F is referred to as dissimilarity and denoted D, for example in [7].
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But the most widely used spatial statistic is very likely Moran’s I, introduced in 1950 by a
statistician named P.A.P. Moran. Consider a node-wise value x = (x1, . . . , xn), such as population
of group X in our setup. Let x0 = x̄/n be the average level over the nodes. We might choose to
translate x so that its mean is zero, defining v = (x1 − x0, . . . , xn − x0). Then we can define

I =
n

|E|
·

∑
i∼j

(xi − x0)(xj − x0)∑
i(xi − x0)2

=
n

|E|
· v

TAv

vTv
,

in terms of the adjacency matrix A, which in linear algebra terms is just a normalized Rayleigh
quotient for the vector v.

To compute this for several test patterns, notice that it can be interpreted as the average of vivj
values for adjacent pairs of units divided by the average v2

i over the single units. Moran’s coefficient
for a checkerboard pattern of 0 and 1 on a grid graph would be −1, because every vi = xi − x0

would be ±1/2, but all of the signs in the numerator would be negative because of the alternation.
On the other hand, uniformly distributing 0 and 1 values on the vertices of a large graph would
give a score near I = 0, because of the expected cancellation of positive (like) and negative (unlike)
terms. And a heavily clustered 0-1 configuration would tend toward I = 1, because nearly all vivj
terms would be between like pairs, giving vivj = v2

i , and the two types of adjacency occur in the
same proportion as the two types of nodes.

A local version of this score has been proposed, defined in the neighborhood of the jth unit. This
can be useful to locate clustering. It can be defined by

Ij = n(xj − x0) ·

∑
i∼j

(xi − x0)∑
i(xi − x0)2

,

which is just like the global I except that the numerator only looks at adjacencies involving node
j and we have dropped the normalization by the total number of edges. This has been applied to
redistricting in work of Chen–Rodden [1].

One important critique of Moran’s I is that it is heavily subject to MAUP, or the modifiable areal
unit problem discussed in the introduction. This is an important concern in geography: if a score
depends too heavily on the choice of geographical units—such as census blocks versus block groups,
tracts, etc—that undermines its diagnostic usefulness. To see this problem in Moran’s I, consider
again the 0-1 checkerboard configuration on a large grid. If the individual units are used, we get
I = −1, but if we reaggregate mildly so that the 2× 2 pieces are used as units, then each unit has
an identical composition and we get I = 0.

3.3. Assortativity scores in network science. In network science, techniques from graph theory,
geometry, and data analysis are used to study the structure of networks that come from real-world
data. The field largely developed through applications to ecology, epidemiology, and social networks.
The term assortativity is attached to a range of network scores that are broadly designed to assess
whether nodes are more often adjacent to nodes like or unlike themselves, making it precisely
aligned with the motivation used to define capy scores above. Some of the early focus in the study
of assortativity was on graph-theoretic properties, asking for instance whether neighbors are likely
to have similar degree or connectivity properties. But demographic sorting has also been considered.
For instance, one common example is to study the racial assortativity of social networks; this is
clearly relevant to the current application, which is racial assortativity of geographical networks.
With an example like this in mind, a recent survey by Mark Newman [9] gives as its main example
an assortativity coefficient Q that had been developed to study the spread of HIV. Generally defined
with respect to any number of non-overlapping groups that make up a population, it simplifies to
something familiar in the case of a group and its complement: it is built from the fraction of XX
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edges among the XX and XY edges and the corresponding term for YY.

Q =

[
〈〈x,x〉〉

〈〈x,x〉〉+ 〈x,y〉
+

〈〈y,y〉〉
〈〈y,y〉〉+ 〈x,y〉

]
− 1.

Dropping the linear terms (so that 〈x,x〉 ≈ 2〈〈x,x〉〉), we have Q ≈ 2Edge − 1, which means that
it captures just the same information as Edge, but affinely rescaled to vary over [−1, 1] rather than
[0, 1].

Thus assortativity is in a sense already in the capy family. However, Q only handles nodes
whose attributes vary over a finite set, and our exploded graph construction enables us to deal with
percentage values, which is a significant generalization. In addition, we think that the HalfEdge
score is a valuable variant on the edge-centered view.

4. Asymptotics on grid graphs

We derive the theoretical behavior of the edge and half-edge capy scores in different configura-
tions. Consider an n × n grid with each node holding a population of M people, so that the total
population of the grid is p̄ = Mn2. We recall that ρ = x̄/p̄ (so that 0 ≤ ρ < 1/2) is the parameter
representing the (minority) proportion of population X in the grid. In this section we will analyze
scores asymptotically as n→∞.

4.1. Test configurations on asymptotic grids.

4.1.1. Perfect checkerboards. A perfect checkerboard configuration with density ρ, which we call
Checkerboard and denote by Chρ, alternates between xi = 0, yi = M and xj = 2ρM , yj = (1−2ρ)M
on adjacent nodes. In this way it maintains the global proportion ρ of population X.

That is, the pattern of population X is made up of repeating blocks of the form
[
2ρ 0
0 2ρ

]
.

This gives

〈x,x〉 =
n24ρ2M2

2
;

〈y,y〉 =
n2M2 + n2M2(1− 2ρ)2

2
+ 4n2M2(1− 2ρ); and

〈x,y〉 =
n2M22ρ(1− 2ρ)

2
+ 2n2M22ρ.

The capy scores become

Edge(Chρ) =
25− 50ρ+ 20ρ2 − 4ρ3

2(5− ρ)(5− 2ρ2)
and HalfEdge(Chρ) =

5− 8ρ

2(5− 5ρ)
.

4.1.2. Constant/uniform distributions. Next, consider the constant or uniform configuration Constρ,
where each node has xi = ρM and yi = (1− ρ)M . Then,

〈x,x〉 = n2M2ρ2 + 2n2M22ρ2;

〈y,y〉 = n2M2(1− ρ)2 + 2n2M22(1− ρ)2; and

〈x,y〉 = n2M2ρ(1− ρ) + 2n2M22ρ(1− ρ).

The capy scores are then

Edge(Constρ) =
1− ρ+ ρ2

2 + ρ− ρ2
and HalfEdge(Constρ) =

1

2
.
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4.1.3. Isolated configurations. Next, consider binary grid configurations in which no two nodes with
X population are adjacent. For a given ρ, there must be ρn2 nodes of X type to get a total X
proportion of ρ. Any such configuration is called an isolated configuration, and denoted Isolρ. We
compute

〈x,x〉 = n2M2ρ;

〈y,y〉 = n2M2(1− ρ) + 2(2n2 − 4n2ρ)M2; and

〈y,y〉 = 4n2M2ρ.

We get

Edge(Isolρ) =
25− 41ρ

9(5− ρ)
and HalfEdge(Isolρ) =

3− 5ρ

5− 5ρ
.

4.1.4. Clusters. As in the isolated configuration, the one-cluster configurations OneClustρ will have
xi = 0 or M at each node. But this time the ρn2 nodes of type X are in a single large cluster. The
only contributions to the count of XY edges (〈x,y〉) will be the perimeter of the X cluster. We will
choose the cluster to be a asymptotic to the square with side length √ρn, giving 2n2ρ XX edges
and 2n2(1− ρ) YY edges to first order, i.e., up to an error term that is linear rather than quadratic
in n. We have

〈x,x〉 = n2M2ρ+ 4n2M2ρ;

〈y,y〉 = n2M2(1− ρ) + 4n2M2(1− ρ); and

〈x,y〉 = 2nM2√ρ,

with capy scores
Edge(OneClustρ) = HalfEdge(OneClustρ) = 1.

In Section 4.3, we will plot configurations with one and multiple clusters to illustrate how, as the
perimeter of minority clusters increased, the capy scores decrease.

4.2. Asymptotic comparisons. We can plot the four test configurations over 0 < ρ < 1
2 .

4.3. Corroboration on finite grids. To test our analysis of the capy scores for clustering, we
generated test configurations as described in the last section on a 90 × 90 grid graph, where each
unit has a population of 1000. We plot the following configurations for ρ = .1, .2, .3, .4, .5.

• Isolated configurations where some cells are entirely X and no X cell has any rook-adjacent
X neighbors;
• One cluster in which cells are entirely X;
• Two to ten clusters of cells that are entirely X;
• Checkerboard where cells alternate between xi = 2ρ and 0;
• Constant X population of ρ in each cell.

The results, plotted in Figure 4, are nicely consistent with the theoretical behavior derived above,
showing that the asymptotic calculations already work at that scale.

5. Observed network example: Counties of Iowa

Many papers in computational social science propose network-based scores but only try them
on grid graphs. We next move to the real-data setting that is as close as possible to the grid
configuration: the 99 counties of Iowa, whose (rook) dual graph is extremely patterned, with triangle
and square structure. Besides being slightly more combinatorially complex than a grid, it also has
substantial variation in the population by node, as noted above. We carry out HalfEdge calculations
on the test configurations from above, as follows:
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1

.50 ρ

E
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ge OneClustρ

Isolρ

Constρ

Chρ

.5

1

.50 ρ

H
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ge

ρ

Figure 4. capy scores for test patterns, on asymptotic grids (top) and 90×90 grid
graphs (bottom).

Figure 5. These are one-cluster, perfect checkerboard, and isolated configurations,
respectively, on a large grid. Each has ρ = 40% minority population.

• Isolated configurations are produced by randomly choosing nodes to fill with X population
(shown in cyan) such that no two X nodes are adjacent;
• Constant configurations are produced by varying ρ from 0 to 1/2 and giving each node that
share of X population;
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• One-cluster configurations are produced by randomly choosing nodes to be all X and growing
the cluster by adding random neighbors.

The results are shown in Figure 6. We do not feature checkerboard configurations, since those are
only defined on bipartite graphs.

Figure 6. The left-hand side shows one example each of an isolated, uniform, and
one-cluster configuration of populations X (cyan) and Y (magenta) on the dual graph
for Iowa’s counties. By generating thousands of test configurations in these patterns
at different levels of ρ (the proportion of population of X type), we can observe
trends in the HalfEdge score.
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Data Appendices
Moon Duchin, Tyler Piazza

Appendix A. Description of data

We have chosen 100 metropolitan areas (Metros) with significant geographical and demographic
variation, including all of the top 40 most populous metro areas in the continental United States
(by 2010 Census population).

We began with the Core Based Statistical Area (CBSA) shapefiles from the year 2013, fixing these
as the definitions of the 100 Metros. We then intersected these with census tracts from 1990, 2000,
and 2010, creating three timestamps with a constant geographical extension in which to compare
change over time. Demographic data were joined to these tracts and partial tracts from NHGIS
data by Python scripts acting on json files. (See GITHUB for all data and code.) Tracts with zero
population were removed from the dataset, and the corresponding nodes removed from the dual
graphs (though if two vertices were mutually adjacent to a zero-population tract, they were made
adjacent to one another after deletion).

In this appendix, we present a range of tables and plots to illustrate features of segregation scores
computed on these U.S. Metros. For consistency, we will fix two population subgroups to compare:
White and POC. “White" denotes white non-Hispanic Census population, while “POC" (or people
of color) represents the complement of this, encompassing all other racial and ethnic groups.

Appendix B. Comparisons and observations

B.1. Change over time. We used the three timestamps in our dataset to construct plots to
represent the change in segregation over time as reflected in these scores.
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Figure 7. Capy scores for 5 large and 5 medium-sized Metros (population over 1.8
million and 1-1.8 million, respectively) at three timestamps. Most are getting more
diverse and less segregated over time.
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B.2. Comparing the scores pairwise. One notable feature of these scores is that they disagree
significantly from one another on how to rank the 100 Metro areas.
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Figure 8. Pairwise comparisons of how the segregation scores rank the 100 Metro
areas with respect to 2010 data.



CLUSTERING PROPENSITY 15

B.3. Within-tract and between-tract measurements. The next set of plots reports the dif-
ferences that are imposed by varying the weighting of within-tract comparisons relative to between-
tract comparisons. Recall that λ =∞ is the node-only variant (i.e., which disregards adjacency of
tracts) and at the other extreme λ = 0 is the edge-only variant.

We find that the Capy scores are making nontrivial use of the tract adjacency patterns, as
reflected modest but visible change in rankings as λ→∞. Thus the score is actually and not just
theoretically sensitive to the spatial arrangement of tracts. In the other direction, the finding is
more surprising: varying 0 ≤ λ ≤ 1 has virtually no effect at all on the Metro rankings. This means
that there is essentially no information loss in practice when discarding the within-tract scoring.
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Figure 9. These plots compare the Capy scores to their weighted variants, where
the edge terms are weighted λ times as heavily as the node terms.
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B.4. Stability. Ideally, a segregation score should not simply reflect information that is more
simply captured by an aggregate Metro statistic, such as the size of the city, the POC share of the
population, or the choice of units. We address the choice of units below in §B.6. Here we consider
the relationship with city size and POC share.
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Figure 10. These plots compare Capy scores to the POC Share (ρ) in and pop-
ulation of each Metro area. The last row has cities with population less than 1.8
million.

HEdge tends to score the whitest Metros at .5, which is the lowest score ever observed—so it’s
systematically scoring the whitest metro areas as the least segregated. The Edge score also tends
to .5, but that’s right in the middle of the observed scores.
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B.5. Edge vs. half-edge discrepancy. Half-edge is better set up for earth-mover notion of
segregation
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Figure 11. Are the differences between scores primarily explained by factors or-
thogonal to segregation?

B.6. Modifiable Areal Unit Problem. The MAUP.
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Figure 12. There are about 3 times as many block groups as tracts in Chicago,
and about 22 times as many blocks as block groups.
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B.7. Tests on manufactured grids. Tests on generated grids.
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Figure 13. Average values from tests where a 100 by 100 grid is filled in a checker-
board with alternating 1 plus epsilon or 0 plus epsilon. Epsilon is a uniform random
variable in [−0.001, 0.001]. The 50 by 50 grid was made from the 100 by 100 grid by
compressing 2 by 2 blocks into a single block.
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Figure 14. All on 100 by 100 grids

Total population of each square is 1, possibly plus epsilon. Epsilon (ε) is generally a uniform ran-
dom variable in [−0.001, 0.001]. In the graph with "half of the board given positive ε", we specified
that the epsilons on the left half of the grid were non negative, and the epsilons on the right half were
non positive. For the one cluster tests, we created rectangles which were as close to a square as possi-
ble while having area equal to 100·100·ρ. The width, height pairs of the clusters for the ρ values in in-
creasing order are: (20, 25), (25, 40), (30, 50), (40, 50), (50, 50), (50, 60), (50, 70), (50, 80), (60, 75), (50, 100).
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Appendix C. Tabular results

Metro Area E ’10 HE ’10 D ’10 I ’10 E ’00 HE ’00 D ’00 I ’00 E ’90 HE ’90 D ’90 I ’90

Albany NY 0.476 0.572 0.487 0.576 0.479 0.568 0.462 0.573 0.49 0.556 0.475 0.46
Ann-Arbor MI 0.418 0.551 0.392 0.323 0.429 0.553 0.434 0.349 0.441 0.539 0.435 0.222
Athens GA 0.396 0.549 0.374 0.36 0.413 0.553 0.389 0.286 0.398 0.53 0.387 0.354
Atlanta GA 0.468 0.637 0.51 0.577 0.5 0.659 0.559 0.558 0.545 0.69 0.599 0.655
Austin TX 0.413 0.581 0.397 0.488 0.421 0.584 0.413 0.472 0.428 0.58 0.408 0.536
Baton Rouge LA 0.464 0.626 0.526 0.376 0.474 0.633 0.536 0.456 0.473 0.628 0.54 0.352
Birmingham AL 0.517 0.666 0.591 0.589 0.546 0.688 0.612 0.618 0.588 0.728 0.68 0.666
Bloomington IN 0.449 0.525 0.414 0.537 0.466 0.522 0.424 0.523 0.478 0.519 0.463 0.359
Boston MA 0.49 0.614 0.514 0.604 0.499 0.622 0.534 0.633 0.517 0.618 0.556 0.616
Boulder CO 0.406 0.518 0.274 0.151 0.417 0.516 0.265 0.206 0.437 0.511 0.27 0.224
Bridgeport CT 0.479 0.633 0.548 0.585 0.496 0.634 0.579 0.547 0.506 0.625 0.597 0.483
Buffalo NY 0.55 0.668 0.626 0.687 0.561 0.681 0.656 0.653 0.577 0.689 0.695 0.672
Burlington VT 0.453 0.507 0.243 0.423 0.469 0.504 0.233 0.581 0.484 0.502 0.241 0.336
Cedar-Rapids IA 0.453 0.515 0.333 0.449 0.47 0.514 0.351 0.395 0.484 0.511 0.374 0.338
Charlotte SC 0.447 0.602 0.468 0.545 0.447 0.587 0.466 0.465 0.456 0.578 0.474 0.38
Chattanooga TN 0.495 0.605 0.52 0.504 0.501 0.607 0.551 0.503 0.52 0.619 0.638 0.455
Chicago IL 0.493 0.656 0.56 0.558 0.52 0.678 0.605 0.492 0.572 0.715 0.666 0.508
Cincinnati OH 0.502 0.613 0.568 0.571 0.513 0.62 0.6 0.521 0.539 0.642 0.688 0.487
Cleveland OH 0.539 0.668 0.62 0.643 0.595 0.725 0.67 0.727 0.651 0.771 0.734 0.762
Colorado-Springs CO 0.401 0.54 0.292 0.518 0.412 0.54 0.319 0.49 0.426 0.532 0.333 0.407
Columbia SC 0.415 0.583 0.439 0.466 0.418 0.581 0.421 0.468 0.433 0.59 0.455 0.3
Columbus OH 0.476 0.599 0.514 0.562 0.488 0.6 0.519 0.551 0.524 0.624 0.595 0.528
Dallas TX 0.453 0.622 0.477 0.573 0.46 0.624 0.481 0.522 0.478 0.624 0.496 0.516
Dayton OH 0.515 0.633 0.55 0.67 0.531 0.651 0.594 0.668 0.58 0.697 0.679 0.713
Denver CO 0.447 0.598 0.433 0.626 0.464 0.614 0.44 0.634 0.469 0.594 0.43 0.575
Des Moines IA 0.468 0.555 0.448 0.496 0.478 0.558 0.459 0.573 0.493 0.552 0.498 0.536
Detroit MI 0.547 0.689 0.617 0.656 0.622 0.758 0.707 0.75 0.672 0.793 0.775 0.765
Duluth MN 0.455 0.51 0.308 0.314 0.468 0.51 0.334 0.281 0.48 0.508 0.363 0.232
El-Paso TX 0.443 0.536 0.413 0.366 0.432 0.545 0.434 0.178 0.41 0.554 0.457 0.104
Flint MI 0.504 0.638 0.576 0.595 0.558 0.693 0.65 0.615 0.58 0.706 0.711 0.593
Fort Wayne IN 0.525 0.633 0.529 0.7 0.525 0.635 0.552 0.774 0.538 0.631 0.616 0.752
Fresno CA 0.428 0.588 0.437 0.442 0.416 0.582 0.422 0.314 0.425 0.597 0.442 0.398
Grand Rapids MI 0.481 0.59 0.529 0.558 0.485 0.589 0.51 0.604 0.51 0.593 0.522 0.647
Greensboro NC 0.458 0.61 0.49 0.533 0.454 0.594 0.457 0.436 0.477 0.604 0.488 0.457
Greenville SC 0.415 0.544 0.381 0.321 0.418 0.536 0.378 0.318 0.435 0.543 0.431 0.284
Harrisburg PA 0.491 0.603 0.522 0.584 0.507 0.608 0.576 0.559 0.525 0.605 0.64 0.48
Hartford CT 0.496 0.633 0.541 0.608 0.513 0.635 0.567 0.604 0.551 0.663 0.605 0.665
Houston TX 0.447 0.616 0.505 0.44 0.468 0.637 0.519 0.4 0.45 0.617 0.497 0.386
Huntsville AL 0.435 0.576 0.476 0.459 0.449 0.582 0.484 0.478 0.444 0.567 0.519 0.44
Indianapolis IN 0.489 0.613 0.544 0.576 0.525 0.639 0.604 0.619 0.566 0.676 0.682 0.659
Iowa-City IA 0.426 0.517 0.352 0.299 0.451 0.515 0.389 0.206 0.468 0.513 0.425 0.105
Jacksonville FL 0.416 0.573 0.395 0.388 0.445 0.589 0.438 0.443 0.492 0.628 0.487 0.495
Kansas City MO 0.48 0.603 0.486 0.477 0.506 0.623 0.542 0.52 0.545 0.653 0.605 0.553
Kingsport TN 0.469 0.506 0.255 0.235 0.478 0.505 0.304 0.033 0.486 0.507 0.387 0.063
Knoxville TN 0.473 0.544 0.419 0.462 0.481 0.543 0.415 0.543 0.506 0.57 0.512 0.525
Lafayette LA 0.413 0.561 0.419 0.345 0.414 0.553 0.425 0.39 0.475 0.52 0.464 0.421
Lancaster PA 0.486 0.584 0.455 0.628 0.506 0.586 0.499 0.647 0.529 0.6 0.541 0.634
Lansing MI 0.462 0.57 0.473 0.515 0.461 0.564 0.463 0.51 0.458 0.553 0.46 0.454
Las Vegas NV 0.401 0.572 0.35 0.445 0.411 0.579 0.336 0.562 0.419 0.547 0.334 0.375
Lexington KY 0.451 0.553 0.408 0.303 0.456 0.555 0.416 0.314 0.48 0.573 0.478 0.345
Lincoln NE 0.434 0.528 0.359 0.339 0.451 0.522 0.361 0.367 0.473 0.514 0.367 0.483
Little Rock AR 0.489 0.635 0.552 0.465 0.469 0.605 0.541 0.498 0.483 0.604 0.57 0.522
Los Angeles CA 0.473 0.633 0.523 0.546 0.491 0.65 0.546 0.531 0.497 0.663 0.55 0.604
Louisville KY 0.485 0.603 0.487 0.55 0.511 0.622 0.547 0.507 0.547 0.653 0.645 0.443
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Metro Area E ’10 HE ’10 D ’10 I ’10 E ’00 HE ’00 D ’00 I ’00 E ’90 HE ’90 D ’90 I ’90

Madison WI 0.453 0.544 0.401 0.428 0.466 0.541 0.438 0.47 0.479 0.526 0.471 0.504
McAllen TX 0.456 0.512 0.385 0.218 0.446 0.52 0.391 0.249 0.427 0.518 0.377 0.139
Miami FL 0.485 0.641 0.541 0.574 0.491 0.656 0.566 0.61 0.51 0.675 0.615 0.578
Milwaukee WI 0.557 0.696 0.637 0.733 0.585 0.713 0.684 0.771 0.617 0.734 0.703 0.838
Minneapolis MN 0.468 0.577 0.435 0.547 0.485 0.587 0.469 0.594 0.497 0.564 0.477 0.565
Mobile AL 0.463 0.605 0.519 0.334 0.502 0.652 0.578 0.426 0.555 0.7 0.659 0.475
Nashville TN 0.461 0.596 0.486 0.583 0.474 0.591 0.496 0.451 0.505 0.619 0.546 0.499
New Orleans LA 0.446 0.613 0.549 0.362 0.492 0.657 0.598 0.393 0.479 0.642 0.593 0.392
New York NY 0.522 0.685 0.598 0.539 0.55 0.708 0.631 0.507 0.575 0.724 0.661 0.521
New-Haven CT 0.466 0.615 0.515 0.54 0.497 0.63 0.557 0.595 0.521 0.638 0.587 0.578
Oklahoma City OK 0.454 0.583 0.431 0.381 0.418 0.549 0.345 0.265 0.445 0.557 0.376 0.404
Omaha IA 0.473 0.594 0.468 0.65 0.491 0.604 0.506 0.716 0.509 0.596 0.563 0.676
Orlando FL 0.42 0.587 0.421 0.477 0.417 0.574 0.398 0.434 0.426 0.549 0.384 0.372
Philadelphia PA 0.521 0.674 0.573 0.645 0.557 0.702 0.604 0.663 0.601 0.736 0.667 0.676
Phoenix AZ 0.439 0.607 0.437 0.536 0.45 0.609 0.47 0.456 0.451 0.588 0.462 0.44
Pittsburgh PA 0.501 0.586 0.541 0.538 0.519 0.605 0.573 0.56 0.536 0.616 0.627 0.515
Port St. Lucie FL 0.398 0.546 0.415 0.416 0.452 0.579 0.477 0.382 0.511 0.631 0.589 0.376
Portland ME 0.477 0.514 0.358 0.356 0.478 0.506 0.255 0.337 0.487 0.503 0.261 0.272
Providence RI 0.497 0.624 0.499 0.694 0.504 0.614 0.529 0.649 0.511 0.593 0.531 0.557
Raleigh NC 0.408 0.571 0.369 0.483 0.399 0.54 0.32 0.308 0.423 0.551 0.361 0.309
Reno NV 0.389 0.542 0.315 0.397 0.402 0.54 0.329 0.348 0.418 0.52 0.279 0.341
Rochester NY 0.507 0.624 0.543 0.732 0.513 0.624 0.558 0.743 0.526 0.621 0.583 0.765
Sacramento CA 0.439 0.605 0.423 0.572 0.434 0.596 0.408 0.551 0.428 0.569 0.393 0.496
Salt Lake City UT 0.442 0.559 0.382 0.651 0.436 0.551 0.367 0.445 0.454 0.523 0.311 0.341
San Jose/Francisco CA 0.437 0.607 0.442 0.533 0.418 0.588 0.417 0.426 0.422 0.592 0.418 0.471
San-Antonio TX 0.433 0.597 0.433 0.376 0.454 0.622 0.462 0.378 0.461 0.63 0.487 0.493
San-Diego CA 0.425 0.596 0.427 0.443 0.438 0.608 0.447 0.459 0.444 0.605 0.436 0.508
Santa-Cruz CA 0.474 0.641 0.463 0.641 0.473 0.635 0.46 0.641 0.467 0.62 0.477 0.8
Santa-Fe NM 0.419 0.588 0.467 0.308 0.401 0.572 0.47 0.259 0.386 0.555 0.469 0.297
Sarasota FL 0.441 0.554 0.399 0.425 0.466 0.574 0.496 0.374 0.484 0.557 0.57 0.194
Savannah GA 0.401 0.567 0.429 0.194 0.418 0.579 0.482 0.13 0.434 0.593 0.53 0.116
Seattle WA 0.416 0.555 0.352 0.563 0.415 0.551 0.323 0.489 0.455 0.558 0.354 0.445
South Bend IN 0.443 0.556 0.439 0.44 0.463 0.571 0.483 0.456 0.477 0.563 0.519 0.373
St. Louis MO 0.553 0.686 0.615 0.743 0.559 0.689 0.633 0.669 0.586 0.705 0.696 0.627
Syracuse NY 0.511 0.607 0.556 0.683 0.512 0.606 0.55 0.695 0.521 0.603 0.584 0.615
Tallahassee FL 0.395 0.561 0.376 0.238 0.393 0.554 0.381 0.18 0.411 0.565 0.461 0.127
Tampa FL 0.428 0.586 0.41 0.562 0.462 0.599 0.466 0.527 0.485 0.594 0.517 0.514
Toledo OH 0.476 0.594 0.489 0.651 0.494 0.611 0.526 0.694 0.518 0.627 0.577 0.712
Tucson AZ 0.432 0.602 0.418 0.49 0.435 0.602 0.44 0.461 0.443 0.599 0.462 0.513
Tulsa OK 0.47 0.594 0.48 0.533 0.405 0.542 0.293 0.358 0.439 0.548 0.333 0.347
Tuscaloosa AL 0.423 0.582 0.48 0.255 0.433 0.595 0.497 0.421 0.442 0.589 0.501 0.238
Virginia-Beach VA 0.402 0.571 0.401 0.317 0.4 0.564 0.407 0.264 0.417 0.57 0.432 0.317
Washington DC 0.468 0.636 0.514 0.558 0.458 0.623 0.495 0.485 0.492 0.648 0.522 0.56
Wichita KS 0.451 0.574 0.442 0.368 0.454 0.569 0.447 0.423 0.482 0.575 0.468 0.51
York PA 0.471 0.549 0.423 0.413 0.496 0.559 0.524 0.307 0.509 0.557 0.565 0.43
Youngstown OH 0.512 0.606 0.601 0.497 0.522 0.616 0.626 0.479 0.537 0.626 0.684 0.563

This table of 100 metropolitan areas has the scores for 3 decades (2010, 2000, 1990) for the scores Edge, Half Edge,
Dissimilarity, and Moran’s I (E,HE,D,I respectively).
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Metro Area E ’10 HE ’10 D ’10 I ’10 E ’00 HE ’00 D ’00 I ’00 E ’90 HE ’90 D ’90 I ’90

Albany NY 33 67 40 27 41 70 57 28 45 74 60 55
Ann-Arbor MI 84 81 82 88 80 79 68 81 80 84 75 93
Athens GA 98 82 87 83 92 78 82 89 99 86 84 76
Atlanta GA 42 13 34 25 27 11 22 32 16 12 24 15
Austin TX 90 62 80 56 81 58 77 54 86 59 81 31
Baton Rouge LA 47 21 25 79 46 23 32 60 63 28 41 77
Birmingham AL 9 8 8 21 9 8 9 19 5 5 10 12
Bloomington IN 61 92 73 45 53 92 71 39 58 91 66 75
Boston MA 22 27 31 19 28 30 33 17 30 38 37 19
Boulder CO 92 93 98 100 88 94 98 96 82 96 98 92
Bridgeport CT 30 19 17 22 31 22 16 35 38 31 25 51
Buffalo NY 3 6 2 6 4 9 4 12 9 13 6 11
Burlington VT 55 99 100 72 49 100 100 26 51 100 100 83
Cedar-Rapids IA 56 95 94 64 48 96 88 73 50 95 88 82
Charlotte SC 62 43 48 41 71 56 54 57 70 60 61 70
Chattanooga TN 19 36 28 52 26 40 26 46 28 37 18 57
Chicago IL 20 9 12 35 14 10 10 48 11 7 13 43
Cincinnati OH 15 30 11 31 17 32 13 41 18 21 7 49
Cleveland OH 5 7 3 14 2 2 3 5 2 2 2 5
Colorado-Springs CO 96 89 97 50 93 88 95 49 90 85 94 65
Columbia SC 87 60 57 60 85 61 73 56 85 56 72 86
Columbus OH 34 44 32 34 37 46 37 34 25 32 26 33
Dallas TX 58 24 45 29 60 26 49 40 59 33 53 37
Dayton OH 10 20 15 8 10 15 15 10 8 11 11 7
Denver CO 64 45 61 17 56 35 64 16 65 50 78 25
Des Moines IA 44 78 53 54 44 74 60 27 42 78 51 32
Detroit MI 4 2 4 9 1 1 1 3 1 1 1 3
Duluth MN 53 98 96 91 51 97 91 90 55 97 90 91
El-Paso TX 66 90 74 81 79 83 69 98 98 76 71 99
Flint MI 14 12 9 20 6 6 5 20 7 8 3 22
Fort Wayne IN 6 18 24 4 11 20 25 1 19 24 20 6
Fresno CA 77 53 59 67 89 60 72 85 91 48 73 67
Grand Rapids MI 28 52 23 36 39 53 39 22 33 53 44 16
Greensboro NC 51 31 37 47 65 50 61 66 61 43 54 56
Greenville SC 88 87 85 89 82 90 85 84 83 83 77 88
Harrisburg PA 21 41 27 23 21 38 18 31 24 42 17 52
Hartford CT 18 17 21 18 18 19 20 23 14 16 22 13
Houston TX 63 25 35 68 52 18 38 72 74 39 52 69
Huntsville AL 73 64 46 63 70 59 46 53 76 66 47 61
Indianapolis IN 24 28 18 26 12 17 11 18 12 14 9 14
Iowa-City IA 79 94 92 94 67 95 83 95 66 94 79 98
Jacksonville FL 86 66 81 76 73 52 67 65 44 27 55 47
Kansas City MO 29 40 41 58 22 28 30 42 17 19 23 30
Kingsport TN 41 100 99 97 42 99 96 100 47 98 83 100
Knoxville TN 37 86 70 62 40 84 76 36 37 64 49 34
Lafayette LA 89 73 69 85 91 77 70 75 62 89 65 64
Lancaster PA 25 58 52 16 23 57 41 14 22 46 40 17
Lansing MI 49 71 47 51 59 72 56 43 69 77 70 58
Las Vegas NV 94 68 93 65 94 62 90 29 94 82 93 72
Lexington KY 60 80 76 93 62 75 75 86 54 62 57 79
Lincoln NE 74 91 89 86 68 91 87 79 64 93 89 50
Little Rock AR 23 15 14 61 50 42 31 47 52 44 33 35
Los Angeles CA 38 16 26 40 36 16 29 37 41 17 38 21
Louisville KY 27 39 39 38 20 31 28 44 15 18 16 60
Madison WI 57 85 77 70 55 86 66 55 56 87 62 44
McAllen TX 52 97 83 98 72 93 81 94 88 92 86 95
Miami FL 26 11 22 28 35 13 21 21 34 15 21 23
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Metro Area E ’10 HE ’10 D ’10 I ’10 E ’00 HE ’00 D ’00 I ’00 E ’90 HE ’90 D ’90 I ’90

Milwaukee WI 1 1 1 2 3 3 2 2 3 4 4 1
Minneapolis MN 45 63 60 39 38 55 53 25 40 68 59 26
Mobile AL 48 37 29 87 25 14 17 68 13 10 15 53
Nashville TN 50 47 42 24 45 51 44 63 39 36 39 45
New Orleans LA 65 29 16 82 33 12 14 74 57 22 27 68
New York NY 7 4 7 43 8 4 7 45 10 6 14 36
New-Haven CT 46 26 30 42 29 24 24 24 27 23 29 24
Oklahoma City OK 54 59 63 77 83 82 89 91 75 73 87 66
Omaha IA 36 49 49 12 34 44 40 6 35 49 36 10
Orlando FL 82 55 68 59 87 66 80 67 89 80 85 74
Philadelphia PA 8 5 10 13 7 5 12 11 4 3 12 9
Phoenix AZ 71 34 58 46 69 37 51 62 73 58 67 62
Pittsburgh PA 16 57 20 44 15 43 19 30 21 40 19 38
Port St. Lucie FL 97 84 72 73 66 64 50 76 32 25 28 71
Portland ME 31 96 90 84 43 98 99 83 46 99 99 89
Providence RI 17 22 36 5 24 34 34 13 31 52 42 29
Raleigh NC 91 70 88 57 99 89 94 87 92 79 91 85
Reno NV 100 88 95 75 96 87 92 82 95 90 97 80
Rochester NY 13 23 19 3 16 25 23 4 23 34 31 4
Sacramento CA 70 38 67 30 77 48 78 33 87 65 82 46
Salt Lake City UT 68 75 84 11 75 81 86 64 72 88 96 81
San Jose/Francisco CA 72 32 54 49 84 54 74 69 93 55 80 54
San-Antonio TX 75 46 62 78 64 29 58 77 68 26 56 48
San-Diego CA 80 48 65 66 74 39 63 59 77 41 74 42
Santa-Cruz CA 35 10 51 15 47 21 59 15 67 35 58 2
Santa-Fe NM 83 54 50 92 97 67 52 93 100 75 63 87
Sarasota FL 69 79 79 71 54 65 43 78 49 72 34 94
Savannah GA 95 72 64 99 86 63 48 99 84 54 43 97
Seattle WA 85 77 91 32 90 80 93 50 71 70 92 59
South Bend IN 67 76 56 69 57 68 47 61 60 69 46 73
St. Louis MO 2 3 5 1 5 7 6 9 6 9 5 18
Syracuse NY 12 33 13 7 19 41 27 7 26 45 30 20
Tallahassee FL 99 74 86 96 100 76 84 97 97 67 69 96
Tampa FL 78 56 75 33 58 47 55 38 48 51 48 39
Toledo OH 32 51 38 10 32 36 35 8 29 29 32 8
Tucson AZ 76 42 71 55 76 45 65 58 78 47 68 40
Tulsa OK 40 50 44 48 95 85 97 80 81 81 95 78
Tuscaloosa AL 81 61 43 95 78 49 42 71 79 57 50 90
Virginia-Beach VA 93 69 78 90 98 71 79 92 96 63 76 84
Washington DC 43 14 33 37 61 27 45 51 43 20 45 28
Wichita KS 59 65 55 80 63 69 62 70 53 61 64 41
York PA 39 83 66 74 30 73 36 88 36 71 35 63
Youngstown OH 11 35 6 53 13 33 8 52 20 30 8 27

This table of 100 metropolitan areas has the ranks of the scores for 3 decades (2010, 2000, 1990) for the scores Edge,
Half Edge, Dissimilarity, and Moran’s I (E,HE,D,I respectively). A rank of 1 in E′10 means that the score was the

largest Edge score of the 100 metropolitan area scores for Edge of 2010.

Massachusetts, United States
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