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The 2020 Decennial Census will be released with a new disclosure avoidance system in place,12

putting differential privacy in the spotlight for a wide range of data users. We consider several key13

applications of Census data in redistricting, developing tools and demonstrations for practitioners14

who are concerned about the impacts of this new noising algorithm called TopDown. Based on a15

close look at reconstructed Texas data, we find reassuring evidence that TopDown will not threaten16

the ability to produce districts with tolerable population balance or to detect signals of racial17

polarization for Voting Rights Act enforcement.18
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1 Introduction33

A new disclosure avoidance system is coming to the Census: the 2020 Decennial Census34

releases will use an algorithm called TopDown to protect the data from increasingly feasible35

reconstruction attacks [2]. Census data is structured in a nesting sequence of geographic36

units covering the whole country, from nation at the top to small census blocks at the37

bottom. TopDown starts by setting a privacy budget ε > 0 which is allocated to the levels of38

a designated hierarchy, then adding noise at each level in a differentially private way [12].39

When ε→∞, the data alterations vanish, while ε→ 0 yields pure noise with no fidelity to40

the input data. The algorithm continues with a post-processing step that leaves an output41

dataset that is designed to be suitable for public use.42
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Redistricting is the process of dividing a polity into territorially delimited pieces in which43

elections will be conducted. The Census has a special release—named the PL 94-171 after44

the law that requires it—that reports the number of residents in every geographic unit in45

the country by race, ethnicity, and the number of voting-age residents [9]. The 2020 release46

is slated to occur by September 2021, after which many thousands of district lines will47

be redrawn: not only U.S. Congressional districts, but those for state legislatures, county48

commissions, city councils, and many more.49

Many user groups have expressed concerns about the effects of differential privacy on50

redistricting. They largely but not exclusively concern two issues. First, “One Person, One51

Vote” case law calls for balancing population across the electoral districts in a jurisdiction,52

whether small like city council districts or large like congressional districts. Most states53

balance congressional districts to within one person based on Census counts. Second, the54

most reliable legal tool against gerrymandering has been the Voting Rights Act of 196555

(VRA), which requires a demonstration of racially polarized voting (RPV). This RPV analysis56

is typically performed by statistical techniques that infer voting by race from precinct-level57

returns. Many voting rights advocates worry that noising of Census data will confuse58

population balancing practices, and others worry that it will attenuate RPV signals, making59

it harder to press valid claims.60

The Census Bureau has been commendably transparent about the development of61

TopDown, making working code publicly available along with documentation and research62

papers describing the algorithm. The complexity of the algorithm makes it extremely difficult63

to study analytically, so many people have sought to run it on realistic data. However, since64

person-level Census data remain confidential for 72 years after collection, detailed input data65

for TopDown is not public. Data users who would like to understand its impacts are left with66

two options: decades-old data or a limited demonstration data product.67

In this paper, we get around the empirical obstacle by use of reconstructed block-level 201068

microdata for the state of Texas, and we try to understand the algorithm through theoretical69

analysis of a much-simplified toy algorithm, ToyDown, that retains the two-stage, top-down70

structure of TopDown but is much easier to analyze symbolically. We investigate three71

questions about the count discrepancies created by TopDown in units of census geography72

and “off-spine” aggregations like districts and precincts.73

Hierarchical budget allocation. We derive easy-to-evaluate expressions for ToyDown errors74

as a function of the privacy budget allocation. Error at higher levels of the geographic75

hierarchy impacts lower-level counts with a significant discount, suggesting that bottom-76

heavy allocations may be optimal for accuracy on small geographies. This is consistent with77

the small-district errors in our experiments with TopDown. For larger districts, a tract-heavy78

allocation gives greatest accuracy. Equal allocation over the levels is a strong performer in79

both cases, making this a good choice from the point of view of multi-scale redistricting.80

District construction. From there, we create further tests to study the impacts of district81

design. We compare hierarchically greedy to geometrically greedy district-generation schemes,82

where the former attempt to keep large units whole and the latter attempt to build districts83

with short boundaries. We find that the ToyDown model gives errors very closely keyed to84

the fragmentation of the hierarchy, but that spatial factors damp out the primary role of85

fragmentation in the shift to the TopDown setting.86

Robustness of linear regression. Finally, we consider the unweighted linear regressions87

commonly used to assess racial polarization in voting rights cases. We find that the noise88

from both ToyDown and TopDown introduces an attenuation bias that seems alarming at89

first. However, unweighted linear regression on precincts is already vulnerable to major skews90
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imposed by the inclusion of very small precincts. For any reasonable way of counteracting91

that—trimming out the tiny precincts or weighting the regression by the number of votes92

cast—the instability introduced by ToyDown and TopDown all but vanishes.93

Our investigation is set up to answer questions about the status quo workflow in94

redistricting. As usual with studies of differential privacy, a finding that DP unsettles the95

current practices might lead us to call to refine the way it is applied, but might equally lead96

us to interrogate the traditional practices and seek next-generation methods for redistricting.97

In particular, it is clear that the practice of one-person population deviation across districts98

was never reasonably justified by the accuracy of Census data nor required by law, and the99

adoption of differential privacy might give redistricters occasion to reconsider that practice.100

We make a similar observation about the way that racially polarized voting analysis is101

commonly performed in expert reports. On the other hand, by focusing on decisions still to102

be announced like the privacy budget and its allocation over the hierarchy, we are able to103

make recommendations that can assist the Bureau in protecting privacy while attending to104

the important concerns of user groups.105

2 Background on Census and redistricting106

2.1 The structure of Census data and the redistricting data products107

Every ten years the U.S. Census Bureau attempts a comprehensive collection of person-level108

data—called microdata—from every household in the country. The microdata are confidential,109

and are only published in aggregated tables subject to disclosure avoidance controls. The110

Decennial Census records information on the sex, age, race, and ethnicity for each member of111

each household, using categories set by the Office of Management and Budget [8]. The 2020112

Census used six primary racial categories: White, Black, American Indian, Asian, Native113

Hawaiian/Pacific Islander, and Some Other Race. An individual can select these in any114

combination but must choose at least one, creating 26 − 1 = 63 possible choices of race.115

Separately, ethnicity is represented as a binary choice of Hispanic/Latino or not.116

The 2010 Census divided the nation into over 11 million small units called census blocks117

which nest in larger geographies in a six-level “central spine”: nation—state—county—118

tract—block group—block. Counts of different types are provided with respect to these119

geographies. This tabular data is then used in an enormous range of official capacities, from120

the apportionment of seats in the U.S. House of Representatives to the allocation of many121

streams of federal and state funding. The redistricting (PL 94-171) data includes four such122

tables: H1, a table of housing units whose types are occupied/vacant; and four tables of123

population, P1 (63 races), P2 (Hispanic, and 63 races of non-Hispanic population), and124

P3/P4 (same as P1/P2 but for voting age population). Each table can be thought of as a125

histogram, with each included type constituting one histogram bin. For instance, in table P1126

there is 1 person in the t =White+Asian bin in the Middlesex County, MA, block numbered127

31021002.128

Treating the 2010 tables as accurate, it is easy to infer information not explicitly presented129

in the tables. For instance, the same bin in the P3 table (race for voting age population) also130

has a count of 1, implying that there are no White+Asian people under 18 years old in block131

31021002. This is the beginning of a reconstruction process that would enable an attacker, in132

principle, to learn much of the person-level microdata behind the aggregate releases.133
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2.2 Disclosure avoidance134

Title 13 of the U.S. Code requires the Bureau to take measures to protect the privacy of135

respondents’ data [1]. In the 2010 Census, this was largely achieved by an ad hoc mechanism136

called data swapping: a Bureau employee manually swapped data between small census137

blocks to thwart re-identification. In 2020, swapping is no longer considered adequate to138

protect against more sophisticated (but mathematically straightforward) data attacks that139

seek to reconstruct the individual microdata. An internal Census Bureau study concluded140

that data swapping was unacceptably vulnerable: Census staff were able to reconstruct the141

2010 Census responses of—and correctly reidentify—tens of millions of people.142

With the reconstruction/reidentification threat in mind, the Bureau has developed an143

algorithm called TopDown [2], which begins with a noising step that is differentially private,144

following a mathematical formalism that provides rigorous guarantees against information145

disclosure [12]. Differentially private algorithms obey a quantifiable limit to how much the146

output can depend on an individual record in the input. The relationship of output to input147

is specified by a tuneable parameter, ε, often called the privacy budget. When ε→∞, the148

output approaches equality to the input (high risk of disclosure). When ε→ 0, the output149

bears no resemblance to the input whatsoever (no risk of disclosure). Like a fiscal budget,150

the privacy budget can be allocated until it is fully spent, in this case by spending parts of151

the budget on particular queries and on levels of the hierarchy.152

TopDown takes an individual-level table of census data and creates a ‘synthetic’ dataset153

that will be used in its place to generate the PL 94-171 tables. It can be thought of as154

taking as input a histogram with a bin for each person type (i.e., a combination of race, sex,155

ethnicity, etc.) and outputting an altered version of the same histogram. It proceeds in two156

stages. First, it privatizes the input histogram counts: it adds enough random noise to get157

the required level of differential privacy (according to the budget ε). At this stage, it also158

allocates a portion of the total privacy budget for generating additional noisy histograms of159

data of particular importance to the Census Bureau. Second, TopDown does post-processing160

on the noisy histograms to satisfy a handful of additional plausibility constraints. Among161

other things, post-processing ensures that the resulting histograms contain only non-negative162

integers, are self-consistent, and agree with the raw input data on a handful of invariants163

(e.g., total state population).164

The overall privacy guarantees of TopDown are poorly understood. In this paper, we165

design a simpler cousin of TopDown nicknamed ToyDown and we explore the properties of166

both ToyDown and TopDown, primarily focusing on reconstructed Texas data from 2010.167

2.3 The use of Census products for redistricting168

The PL 94-171 tables are the authoritative source of data for the purposes of apportionment169

to the U.S. House of Representatives, and with a very small number of exceptions also for170

within-state legislative apportionment. The most famous use of population counts is to171

decide how many members of the 435-seat House of Representatives are assigned to each172

state. In “One person, one vote” jurisprudence initiated in the Reynolds v. Sims case of173

1964, balancing Census population is required not only for Congressional districts within174

a state but also for districts that elect to a state legislature, a county commission, a city175

council or school board, and so on [17, 18, 3].176

Today, the Congressional districts within a state usually balance total population extremely177

tightly: each of Alabama’s seven Congressional districts drawn after the 2010 Census has178

a total population of either 682,819 or 682,820 according to official definitions of districts179
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and the Table P1 count, while Massachusetts districts all have a population of 727,514 or180

727,515. Astonishingly, though no official rule demands it, more than half of the states181

maintain this “zero-balancing” practice (no more than one person deviation) for Congressional182

districts [16]. This ingrained habit of zero-balancing districts to protect from the possibility183

of a malapportionment challenge is the first source of worry in the redistricting sphere. If184

disclosure avoidance practices introduce some systematic bias—say by creating significant185

net redistribution towards rural and away from urban areas—then it becomes hard to control186

overall malapportionment, which could in principle trigger constitutional scrutiny. In the187

end, redistricters may not care very much how many people live in a single census block, but188

it could be quite important to have good accuracy at the level of a district.189

The second major locus of concern for redistricting practitioners is the enforcement of the190

Voting Rights Act (VRA). Here, histogram data is used to estimate the share of voting age191

population held by members of minority racial and ethnic groups. Voting rights attorneys192

must start by satisfying three threshold tests without which no suit can go forward.193

Gingles 1: the first “Gingles factor” in VRA liability is satisfied by creating a demonstration194

district where the minority group makes up over 50% of the voting age population.195

Gingles 2-3: the voting patterns in the disputed area must display racial polarization.196

The minority population is shown to be cohesive in its candidates of choice, and bloc197

voting by the majority prevents these candidates from being elected. In practice, inference198

techniques like linear regression or so-called “ecological inference” are used to estimate199

voting preferences by race.200

Since the VRA has been a powerful tool against gerrymandering for over 50 years, many201

worry that even where the raw data would clear the Gingles preconditions, the noised data202

will tend towards uniformity—blocking deserving plaintiffs from a cause of action.203

3 Census TopDown and ToyDown204

3.1 Setup and notation205

For the Census application, the data universe is a set of types: for instance, the redistricting206

data (the PL 94-171) has the types T = TR × TE × TV A × TH , where TR is the set of 63207

races, TE is binary for ethnicity (Hispanic or not), TA is binary for age (voting age or not),208

and TH is the set of housing types. (The fuller decennial Census data has more types.)209

A hierarchy H is a rooted tree of some depth d, so that every leaf has distance ≤ d− 1210

from the root. We will usually assume the hierarchy has uniform depth, so that every leaf is211

exactly d− 1 away from the root. For node h ∈ H, let n(h) ∈ N be the number of children212

of h in the tree, and let ℓ(h) be the level of node h. A hierarchy is called homogeneous213

if each node at level ℓ has the same number of children, denoted nℓ. Let Hℓ denote the214

set of nodes at level ℓ, so that the set of leaves is Hd in the uniform-depth case. Label215

the root of the tree h = 1. We adopt an indexing of the tree and refer to the ith child of216

h as hi; the parent of any non-root node h is denoted ĥ. In Census data, the hierarchy217

represents the large and complicated set of nested geographical units, from the nation at218

the root down to the census blocks at the leaves. The standard hierarchy has the six levels219

(nation—state—county—tract—block group—block) described above.220

We associate with hierarchy H and types T a set of counts AH,T = {ah,t ∈ N}h∈H,t∈T ,221

where ah,t is the population of type t in unit h of census geography. We say AH,T is222

hierarchically consistent if the counts add up correctly: for every non-leaf h and every t, we223

require ah,t =
∑

i∈[n(h)] ahi,t. For a singleton T , we write AH = {ah}. We set an allocation224

(ε1, . . . , εd) breaking down the privacy budget ε =
∑

εi to the different levels of the hierarchy.225

FORC 2021
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Our queries will always be counting queries, so that for instance qF,44(h) returns the226

number of 44-year-old females in geographic unit h. This particular query is part of a “sex227

by age” histogram Qsex,age = {qs,a : s ∈ TS , a ∈ TA}, which partitions T into bins by sex228

and age. In this language, qF,44 is a bin of the sex-by-age histogram. By slight abuse of229

notation, we will use the same terminology for the queries and their outputs, so that the230

histogram can be thought of as the collection of queries or the collection of counts. Similarly,231

the “voting age by ethnicity by race” histogram consists of a query for each combination of232

the 2× 2× 63 possible combinations of the three attributes.233

3.2 ToyDown and TopDown234

The Bureau’s TopDown and our simplified ToyDown are both algorithms for releasing235

privatized population counts for every h ∈ H. That is, these algorithms protect privacy by236

noising the data histograms. TopDown releases not just total population counts, but counts237

by type. We will define single-attribute and multi-attribute versions of ToyDown that noise238

AH and AH,T , respectively, where consistency must hold for each type t.239

TopDown and ToyDown share the same two-stage structure. Starting with hierarchically240

consistent raw counts a, the noising stage generates differentially private counts â. The241

post-processing stage solves a constrained optimization problem to find noisy counts α that242

are close to the â values while satisfying hierarchical consistency and other requirements.243

TopDown is named after the iterative approach to post-processing: one geographic level at a244

time, starting at the top (nation) and working down to the leaves (blocks). We sketch the245

noising and post-processing here, and we describe them in Appendix A in more detail.246

The simple ToyDown model can be run in a single-attribute version (only counts AH),247

a multi-attribute version (counts by type AH,T ), or in multi-attribute form enforcing non-248

negativity. The single-attribute version is easy to describe: level by level, random noise values249

are selected from a Laplace distribution with scale 1/εℓ and added to each count, replacing250

each ah with âh = ah + Lh. Then, working from top to bottom, the noisy âh are replaced251

with the closest possible real numbers αh satisfying hierarchical consistency. Multi-attribute252

ToyDown is defined analogously, but using AH,T instead of AH and requiring hierarchical253

consistency within each type t ∈ T . Non-negative ToyDown adds the inequality requirement254

that αh ≥ 0.255

TopDown is structurally similar but much more complex, with more kinds of privatized256

counts in the noising stage and a great many more constraints in the post-processing stage,257

including integrality. The privatized counts computed by TopDown are specified by a collection258

of histograms (or complex queries) called a workload W . For each bin of each histogram259

in the workload and for each node h in the geographic hierarchy, TopDown adds geometric260

noise to the count. The post-processing step finds the closest integer point that satisfies261

the requirements given by hierarchical consistency, non-negativity, as well as additional262

conditions given as invariants and structural inequalities. For example, any block with263

zero households in the raw counts must have zero households and zero population in the264

output adjusted counts. Together, the invariants, structural inequalities, integrality, and265

non-negativity make this optimization problem very hard. The problem is NP-hard in the266

worst case and TopDown cannot always find a feasible solution. There is a sophisticated267

secondary algorithm for finding approximate solutions that is beyond the scope of this paper.268

ToyDown is simple enough that solutions can often be obtained symbolically. ToyDown269

simplifies the noising stage by fixing the workload to be the detailed workload partition270

Qdetailed = {{t}}t∈T consisting of all singleton sets and using the continuous Laplace271

Mechanism instead of the discrete Geometric Mechanism. It simplifies the post-processing272
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stage by dropping invariants, structural inequalities, integrality, and non-negativity. When273

negative answers are permitted, multi-attribute ToyDown is equivalent to executing |T |274

independent instances of single-attribute ToyDown on inputs AH,t = {ah,t}h∈H for each275

t ∈ T . As a result, many of our analytical results for single-attribute ToyDown extend276

straightforwardly to multi-attribute ToyDown (allowing negative answers) by scaling by a277

factor of |T | in appropriate places.278

4 Methods279

We use both analytical and empirical techniques in this work. This section describes our280

high-level empirical approach: what algorithms and raw data we used and how we used281

them. See Appendix B for more details. We repeatedly ran TopDown and ToyDown in282

various configurations on a reconstructed person-level Texas dataset created by applying a283

reconstruction technique to the block-level data from the 2010 Census, following [15] based on284

[11]. The reconstructed microdata records—obtained from collaborators—contain block-level285

sex, age, ethnicity, and race information consistent with a collection of tables from 2010286

Census Summary File 1.287

We executed 16 runs of TopDown with each of 20 different allocations of the privacy budget288

across the five lower levels of the national census geographic hierarchy: ε = ε2+ε3+ε4+ε5+ε6.289

The 20 allocations consist of five different splits across the levels (Table 1) for each of four290

total budgets ε ∈ {0.25, 0.5, 1.0, 2.0}. TopDown operates on the six-level Census hierarchy291

and requires specifying ε1. In our experiments, we ran TopDown with a fixed total privacy292

budget εtotal = 10, with ε1 = 10 − ε. Because the nation-level budget is so much higher293

than the lower level budgets, we omit further discussion of it. The TopDown workload was294

modeled after the workload used in the 2018 End-to-End test release, omitting household295

invariants and queries.296

We also ran three variants of ToyDown (single-attribute, multi-attribute, and non-negative)297

on a simplified version of the same data 2010 data. We executed 16 runs of each variant298

with each of five different splits of the privacy budget across the five lower levels of the299

census geographic hierarchy (Table 1), fixing the total budget for those five levels at ε = 1.300

The data was derived from the reconstructed Texas data simplified to include only seven301

distinct types: one for the total Hispanic population and one for each of six subgroups of302

the non-Hispanic population based on race (White; Black; American Indian; Asian; Native303

Hawaiian/Pacific Islander; and Some Other Race or multiple races). Post-processing for single-304

attribute ToyDown was implemented in NumPy, while post-processing for multi-attribute305

and non-negative ToyDown used a Gurobi solver.306

5 Hierarchical budget allocation307

The relationship of the hierarchical allocation (ε1, . . . , εd) to various measures of output308

accuracy is not obvious. On one hand, it might seem that higher values of εd (the block-level309

budget) will best promote accuracy at the block level, for a fixed ε. But on the other310

hand, imposing hierarchical consistency forces lower levels to be consistent with the totals at311

higher levels, which means that noise at higher levels can trickle down to lower levels. These312

competing effects create tradeoffs that are hard to balance without further analysis.313
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state county tract BG block
Split name ε2 ε3 ε4 ε5 ε6

equal 0.2 0.2 0.2 0.2 0.2
state-heavy 0.5 0.25 0.083 0.083 0.083
tract-heavy 0.083 0.167 0.5 0.167 0.083

BG-heavy 0.083 0.083 0.167 0.5 0.167
block-heavy 0.083 0.083 0.083 0.25 0.5

Table 1 Names of designated budget splits used
in ToyDown and TopDown runs below, each with
a budget of ε1 = 9 on the nation and a total of 1
allocated below the national level.

7
12

1
2

0 1

1
4

0 0 0 1

1

1 1

Figure 1 A district in a three-
level hierarchy. The 0/1 weight of a
leaf indicates its membership in the
district; each non-leaf weight is the
average of the node’s children.

5.1 ToyDown error expressions314

▶ Definition 1 (District, weights, error). A district D ⊆ Hd is a subset of the leaves (blocks)315

of the hierarchy H. For hierarchy H, a district D induces weights wh ∈ [0, 1] on the hierarchy316

nodes, defined recursively as follows:317

For each leaf h ∈ Hd, let wh = 1 if h ∈ D and wh = 0 otherwise.318

For ℓ ≤ d− 1 and h ∈ Hℓ, let wh = 1
n(h) ·

∑
i∈[n(h)] whi

be the average of the weights of319

the children.320

In a homogeneous hierarchy, we can observe that each wh equals the fraction of the leaves321

descended from h that belong to D. In particular, the root weight is w1 = |D|/|Hd| = 1/k if322

there are k districts of equal population made from nodes of equal population.323

For node h ∈ H, we record the error Eh = αh − ah introduced by ToyDown to the count324

ah. The total error over district D is ED =
∑

h∈D Eh. Let ĥ denote the parent of node h.325

▶ Theorem 2 (Error expressions). E1 = L1. For ℓ ∈ {2, . . . , d} and non-root node hi ∈ Hℓ,326

and for every district D with associated weights wh on the nodes,327

Ehi
= Lhi

+ 1
n(h)

Eh −
∑

j∈[n(h)]

Lhj

 , ED = w1L1 +
∑

h∈H\{1}

(wh − wĥ)Lh. (1)328

We make several observations. First, our intuition that error at higher levels trickles down329

to lower levels is correct, but this effect is rather weak. The error at a child hi is determined330

by the parent error Eh discounted by the degree n(h), the number of siblings. This suggests331

that placing more budget at level ℓ is an efficient way to secure accuracy at that level, until332

a fairly extreme level of error at higher levels overwhelms the degree-based “discount.”333

Second, because the Lh are all independent random variables with E(Lh) = 0 and334

Var(Lh) = 8/ε2
ℓ(h), the theorem provides the following expression for variance that we use335

repeatedly.336

▶ Corollary 3 (Error expectation and variance). For all D ⊆ Hd and associated weights wh,337

the expected error and error variance produced by ToyDown satisfy E(ED) = 0 and338

Var(ED) = 8w2
1

ε2
1

+
d∑

ℓ=2

(
8
ε2

ℓ

·
∑

h∈Hℓ

(wh − wĥ)2

)
. (2)339

Third, we get a more explicit expression if restricting to homogeneous hierarchies H.340

Consider the case of a singleton district {h} made of a single census block h ∈ Hd.341
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▶ Corollary 4 (Error variance, homogeneous case). The ToyDown error for a single block342

h ∈ Hd satisfies343

Var(Eh) = 8
ε2

1(n1 · · ·nd−1)2 +
d∑

ℓ=2

8nℓ−1(nℓ−1 − 1)
ε2

ℓ(nℓ−1 · · ·nd−1)2 . (3)344

Figure 2 plots this expression for various ways of splitting a total privacy budget of345

ε = 1 across a three-level hierarchy with n1 = n2 = 10. The minimum of f(x1, . . . , xd) =346 ∑d
ℓ=1 aℓ/x2

ℓ subject to
∑

ℓ xℓ = ε and xℓ ≥ 0 is achieved at xℓ = εa
1/3
ℓ /

∑
i a

1/3
i for all ℓ. For347

the example in Figure 2, the minimum-variance split is (ε1, ε2, ε3) = (0.038, 0.171, 0.791) with348

variance 14.52. (See accompanying CoLab notebook.) One important note in interpreting349

Figure 2 is that these variance numbers are absolute and don’t depend on knowing population350

counts for the nodes of the hierarchy. They are simply based on sampling Laplace noise with351

the given parameters. If a variance of about 15 in the bottom-level counts is too high to be352

tolerated in an application, one would have to increase ε to achieve lower variance.353

Figure 2 ToyDown error variance for a leaf node
in the three-level hierarchy with n1 = n2 = 10 and
ε = 1. The curves show varying ε3 (colors) and the
relative balance of ε1 and ε2 (x-axis).

ε Allocation L1 error
1.0 (.16, .16, .16, .16, .16, .2) 0.03
1.0 (.2, .16, .16, .16, .16, .16) 0.03
1.0 (.1, .1, .1, .1, .1, .5) 0.02
1.0 (.02, .02, .02, .02, .02, .9) 0.03
1.0 (.66, .30, .01, .01, .01, .01) 0.09

Table 2 L1 error measurements from
selected TopDown runs on reconstructed
Texas data. The allocation (ε1, . . . , ε6) goes
from the nation ℓ = 1 down to census blocks
at ℓ = 6.

5.2 Empirical error experiments in TopDown354

Next, we move to TopDown, which requires the use of input data. First, using reconstructed355

2010 Texas data, we varied the relative allocation vector and the total ε, then measured356

the effects with an L1 error metric included in the Census code [5]. This is a measure of357

block-level error: it adds the magnitudes of changes in the bins, then divides by twice the358

total population in the histogram.359

Table 2 reports a small selection of the 100+ different scenarios explored. In general, the360

lowest error outcomes were observed in a few scenarios: when the budget was distributed361

near-equally to the levels of the hierarchy, and when half of the available budget was placed362

at the bottom level—beyond εd = ε/2, further bottom-weighting gave diminishing returns in363

block-level accuracy.364

But a budget allocation that produces small block-level errors may not produce small365

errors for districts, depending on the degree of cancellation or correlation. Next, we use366

random district generation to understand the effects of off-spine aggregation. In particular,367

we employ the Markov chain sampling algorithm called recombination (or ReCom), which runs368

an elementary move that fuses two neighboring districts and re-partitions the double-district369

by a random balanced cut to a random spanning tree [10].370
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Figure 3 Three sample districts (yellow) in Dallas County, each within two percent of the ideal
population for k = 4 districts. These are drawn by tract ReCom, block ReCom, and a square-favoring
algorithm, respectively.

We begin with county commission districts in Dallas County, where k = 4. Since the 2010371

population of Dallas County was roughly 2.4 million, each district will have roughly 600,000372

people, making them nearly as big as congressional districts and much larger than tracts.373

We also include divisions of the county into k = 175 districts of between 13,000 and 14,000374

people each for a small-district comparison. Figure 4 plots the data from our experiments on375

a logarithmic scale. Each histogram displays 400 values, one for each district drawn by the376

specified district-drawing algorithm; each value is the mean observed district-level population377

error magnitude over 16 executions of the specified hierarchical noising algorithm using the378

specified budget allocation.379

First, consider two unrealistic forms of district-generation: tract Disconn (red) and block380

Disconn (orange), which randomly choose units of the specified type until assembling a381

collection with the appropriate population. These are unrealistic because they do not form382

connected districts; here, they are used to illustrate the effects of aggregation, neglecting383

spatial factors entirely. We see in Figure 4 that block-based methods generate hugely more384

error than tract-based methods, except if the budget allocation is concentrated at the bottom385

of the hierarchy. The effect is stronger for ToyDown (in keeping with Theorem 2), but is386

easily observed for TopDown as well.387

We compare that with the more realistic district-generation algorithm block ReCom388

(blue), which builds compact and connected districts out of block units. This tends to give389

error levels in between the extremes set by the other two. Likewise, tract ReCom (green)390

builds compact and connected districts from tracts. One reasonable mechanism by which391

ReCom has much lower error than Disconn is that ReCom districts will tend to have higher392

“hierarchical integrity,” keeping higher-level units whole just by virtue of being connected393

and plump. The interior of ReCom districts will thus contain many whole block groups394

and tracts. Near the boundary, block groups and tracts are more fragmented, leaving the395

corresponding block-level errors uncancelled. These fragmentation ideas are explored more396

fully in Section 6 and some sample districts are depicted here.397

The cancellation effect is significant: in most experiments, the error level for ReCom398

districts is much closer to that of tract Disconn than block Disconn (recall the data is plotted399

on a logarithmic scale). Overall, drawing districts out of larger pieces (e.g., using tract400

Disconn instead of ReCom, or ReCom instead of block Disconn) lowers error magnitude401

significantly in the best case and has little or no effect in the worst case.402

Although tract ReCom and tract Disconn behave very similarly under ToyDown, the403

compact districts perform noticeably worse than their disconnected relatives once we pass404

to the full complexity of TopDown. At first this seems puzzling, because compact and405
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k = 175 districts
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Green: tract ReCom, Red: tract Disconn, Blue: block ReCom, Orange: block Disconn

Figure 4 These histograms show district-level error on a log scale for various combinations of
budget splits (rows), district-drawing algorithms (colors), and noising algorithms (columns). We
include both large districts and small districts, dividing the county into k = 4 and k = 175 equal
parts. Each histogram displays 400 values, one for each district drawn by the specified algorithm,
plotting the mean observed district-level population error magnitude over 16 executions of the
noising algorithm using the specified budget allocation.

connected districts are being punished by the geography-aware TopDown. But the reason for406

this is apparent on further reflection: spatial autocorrelation is causing the post-processing407

corrections to move nearby tracts in the same direction, impeding the cancellation that408

makes counts usually more accurate on larger geographies.409

In the end, the story that emerges from these investigations is that, with full TopDown,410

the best accuracy that can be observed for large districts occurs when they are made from411

whole tracts and the allocation is tract-heavy; an equal split is not much worse. For districts412

with population around 13,000, ε = 1 noising creates errors in the low hundreds for compact,413

connected districts, with the best performance for block-heavy allocations. Again, an equal414

split is not much worse, suggesting that this might be a good policy choice for accuracy in415

districts across many scales.416

6 Geometrically compact vs hierarchically greedy districts417

The analysis above suggests that the district-level error ED will depend not only on the418

randomness of the noising algorithms, but also on the geometry of D and the structure of H.419

This section studies the hypothesis that districts that disrespect the geographical hierarchy420

will tend to have higher error magnitude. This section defines the fragmentation score,421
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relates a district’s fragmentation score to its error variance under ToyDown, and compares422

the fragmentation of two simple district-drawing algorithms on homogeneous hierarchies and423

simple geographies. Ultimately, we find that the explanatory value of the fragmentation424

score decays as we move to more realistic deployment of TopDown. This discrepancy raises425

important questions for future study: Which of the many additional features of TopDown426

attenuates the fragmentation–variance relationship?427

We define a score intended to capture the contribution to Var(ED) of the shape of the428

district with respect to the hierarchy. Recall that ĥ denotes the parent of node h.429

▶ Definition 5 (Fragmentation score). For D ⊆ Hd, let Frag(D) =
∑
h∈H

(wh − wĥ)2.430

Because weights are in [0, 1], the score obeys 0 ≤ Frag(D) < |H| for all districts, with higher431

scores indicating the presence of more units that are only partially included in D.432

This fragmentation score is reverse-engineered from the expression for the variance of
district-level population errors when using ToyDown with privacy divided equally across levels
of the hierarchy (Corollary 3): namely, Var(ED) = 8d2

ε2

(
w2

1 + Frag(D)
)
. When the district

D itself is a random variable sampled from some distribution, the expected fragmentation
E(Frag(D)) is similarly related to Var(ED). Namely, using the law of total variation, when
each level gets ε/d privacy budget:

Var(ED) = E (Var(ED|D)) + Var (E(ED|D)) = E(Var(ED|D)) = 8d2

ε2 (E(Frag(D)) + E(w2
1)).

When ε is allocated unequally across levels, as for the other splits in Table 1, the simple433

analytical relationship between the fragmentation score and the error variance breaks down.434

Observe that a hierarchy H does not capture all of the geometry relevant to district435

drawing. In particular, H does not directly encode any information about block adjacency,436

and therefore we can’t detect from H that a district is contiguous. For algorithms to generate437

contiguous districts, we need to make use of the plane geometry associated to H. We restrict438

our attention to the simplest case: homogeneous hierarchies (where every node on level ℓ < d439

has exactly nℓ children) and square tilings. (where each unit on level ℓ is a square and has440

nℓ children that cover it with a √nℓ ×
√

nℓ grid tiling).441

We analyze the fragmentation score for two simple district-drawing algorithms (see442

Appendix C). The Greedy algorithm builds a district from the largest subtrees possible, only443

subdividing a subtree when necessary. It takes as input H and k ∈ N and returns a district444

of size N = ⌊|Hd|/k⌋, assembled by starting with the largest available units at random and445

adding units that are adjacent in the labeling sequence without passing size N , then allowing446

one partial unit, and so on recursively at lower levels. Observe that Greedy depends only on447

the hierarchy H. The Square algorithm takes as input a square, homogeneous hierarchy H448

and k ∈ N such that the district size is a perfect square, |D| = |Hd|/k = sd
2. It outputs a449

uniformly random sd × sd square of blocks.450

▶ Theorem 6. Let DG ∼ Greedy(H, k), D□ ∼ Square(H, k). For n1 · n2 · · ·nd−2 ≥ k ≥ 2,451

let L = arg min{ℓ : n1 · n2 · · ·nℓ ≥ k}.452

E(Frag(DG)) ≤ k − 1
k2

L∑
ℓ=1

nℓ+
1
4

d−1∑
ℓ=L+1

nℓ; E(Frag(D□)) ≥ 2
3

(√
n1 . . . nd−1√

k
− 11

2

)
√

nd−1.453

Dallas County is nearly a perfect square shape, so it gives us an opportunity to set some454

roughly realistic parameters to evaluate these bounds. There are 529 tracts in Dallas County,455



A. Cohen, M. Duchin, JN Matthews, and B. Suwal 5:13

with an average of 3.2 blocks groups per tract and 26.4 blocks per block group, yielding456

44,113 total blocks. We can approximate these parameters by setting d = 4, using k = 4457

as for the county commission districts, and setting (n1, n2, n3) = (484, 4, 25) which has a458

reasonably similar 48,400 blocks (as a result, L = 1). The bounds in the theorem say that459

E(Frag(DG)) ≤ 98 and E(Frag(D□)) ≥ 264. Note: for homogeneous hierarchies H with460

equal-population leaves, the score Frag(DG) is independent of algorithm randomness and461

can be computed exactly; for the above parameters Frag(DG) = 90.75. So the bound in the462

theorem is fairly tight, at least in this case.463

To interpret the theorem, it is helpful to think of Greedy as being hierarchically greedy464

and Square as being geometrically greedy. That is, the former is oriented toward using the465

biggest possible units and keeping them whole, so that spatial considerations are secondary;466

the latter is oriented towards “compact” geographies with a lot of area relative to perimeter,467

and unit integrity is secondary. The theorem shows that compactness alone (a function of the468

plane geometry) does not keep down the fragmentation score (a function of the hierarchy),469

and indeed the bounds get farther apart as the hierarchy gets larger and more complicated.470

In Appendix C, we compare these theoretical results to empirical district errors, finding that471

fragmentation tracks well with errors in ToyDown, but that the complexity of the TopDown472

model weakens the relationship, suggesting a need for more sophisticated tools.473

7 Ecological regression with noise474

7.1 Inference methods for Voting Rights Act enforcement475

When elections are conducted by secret ballot, it is fundamentally impossible to precisely476

determine voting patterns by race from the reported outcomes alone. The standard methods477

for estimating these patterns use the cast votes at the precinct level, combined with the478

demographics by precinct, to infer racial polarization. Because the general aggregate-to-479

individual inference problem is called “ecological” (cf. ecological paradox, ecological fallacy),480

the leading techniques are called ecological regression (ER) and ecological inference (EI). It is481

rare that EI and ER do not substantively agree, and we focus on ER here because it lends482

itself to easily interpretable pictures.483

ER is a simple linear regression, fitting a line to the data points determined by the484

precincts on a demographics-vs-votes plot. A high slope (positive or negative) indicates a485

likely strong difference in voting preferences, which is necessary to demonstrate the Gingles486

2-3 tests for a VRA lawsuit.487

The top row of Figure 5 shows standard ER run on the precincts of Dallas County,488

with each precinct plotted according to its percentage of Hispanic voting age population or489

HVAP (x-axis) and the share of cast votes that went to Lupe Valdez (y-axis). Strong racial490

polarization would show up as a fit line of high slope. This process produces a point estimate491

of Hispanic support for Valdez, found by intersecting the fit line with the x = 1 line, which492

represents the scenario of 100% Hispanic population. The point estimate of non-Hispanic493

support for Valdez is at the intersection of the fit line with x = 0.494

7.2 Summary of Experiments495

ToyDown and TopDown were both run on the full Texas reconstruction from 2010. We plotted496

Dallas County votes from three contests: votes for Obama for president in 2012 general497

election, votes for Valdez for governor in the 2018 Democratic Party primary runoff, and498

votes for Chevalier for comptroller in the 2018 general election. We chose these contests499
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Figure 5 Comparing ecological regression on un-noised data (top row) with various styles of
noising. ER is re-run on data noised by differentially private ToyDown (second row), and data
noised by TopDown (third row), both with ε = 1, equal split. The blue dots repeat the un-noised
data, the pink dots show 16 runs of noised data with pink fit lines re-computed each time. Below
that, the histograms show the point estimates of Latino (gold) and non-Latino (teal) support for
Valdez estimated from ER on data noised by ToyDown (lighter) and TopDown (darker). The last row
contrasts the differentially private algorithms with a naive variant that adds noise to each precinct
from a mean-zero Gaussian distribution, set to match the average precinct level L1 error observed
in the ToyDown runs (in this case, this is σ = 20). Across all of these experiments, the conclusion
is striking: TopDown performs better than ToyDown and far better than a naive Gaussian variant,
even without filtering precincts; if precincts are filtered or weighted, none of the noising alternatives
threatens the ability to detect racially polarized voting.
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All precincts (827) Filtered precincts (626) Weighted precincts (827)
Race this group complement this group complement this group complement

Hispanic 0.869 0.480 0.848 0.596 0.866 0.588
Black 0.917 0.518 0.851 0.620 0.835 0.595
White 0.555 0.623 0.474 0.811 0.478 0.805

All (827) Filtered (626) Weighted (827)
Race Algorithm statistic group compl. group compl. group compl.

Hispanic ToyDown mean 0.715 0.541 0.848 0.595 0.867 0.588
Hispanic ToyDown variance 36000 7000 250 43 160 19

Black ToyDown mean 0.798 0.543 0.851 0.62 0.835 0.595
Black ToyDown variance 39000 2100 89 5.9 25 2.1
White ToyDown mean 0.476 0.674 0.473 0.811 0.478 0.805
White ToyDown variance 17000 8000 64 36 33 17

Hispanic TopDown mean 0.853 0.485 0.848 0.595 0.865 0.587
Hispanic TopDown variance 45000 6700 480 100 120 16

Black TopDown mean 0.91 0.52 0.85 0.62 0.835 0.595
Black TopDown variance 30000 1200 250 23 45 2.4
White TopDown mean 0.582 0.607 0.472 0.81 0.47 0.804
White TopDown variance 10000 3400 92 37 92 10

Table 3 Point estimates from ER for Dallas County in the Valdez/White primary runoff in 2018.
In the first table, estimates are made with (un-noised) VAP data from the 2010 Census. In the
filtered precincts case, precincts with fewer than 10 cast votes are excluded from the initial set of 827
precincts. In the weighted precincts case, precincts are weighted by the number of cast votes. The
ToyDown and TopDown estimates are made from VAP data from 16 runs with ϵ = 1 and an ϵ-budget
with all levels given equal weighting. Variance is the empirical variance over the repeated runs of
the noising algorithm and is in units of 10−8, shown to two significant digits.

because in each, ER finds evidence of strong racially polarized voting when using published500

2010 census data. All three contests gave similar findings; we’ll choose the Valdez runoff501

contest as our focus here.502

For both ToyDown and TopDown, we vary how we handle the inclusion of small precincts in503

the ecological regression. The options are All (every precinct is a data point in the scatterplot,504

all weighted equally); Filtered (only including precincts with at least 10 votes cast in that505

election); or Weighted (weighting the terms in the objective function in least-squares fit by506

number of votes cast). Filtering and weighting are done using the exact number of cast votes,507

not the differentially private precinct population totals, which is realistic to the use case.508

For each noising run we have a block- or precinct-level matrix, M̂ of noised counts, with509

height b, the number of geographic units (blocks or precincts), and width c, the number of510

attributes for which there are counts recorded. We also have a corresponding matrix M of511

un-noised counts. We can compute the L1 error by summing over the absolute value of every512

entry in M − M̂ . ToyDown and TopDown were run 16 times for each configuration. Let Eavg513

be the average L1 error across noising runs.514

If we add Gaussian noise to each count instead, the expected L1 error is
∑

i,j E[|Xi,j |],515

where Xi,j ∼ N (0, σ2). This is the half-normal distribution, so E[|Xi,j |] = σ
√

2√
π

. We516

rearrange to find the standard deviation σ = Eavg
√

π

bc
√

2 that defines the Gaussian distribution517

(with µ = 0), so that adding a random variable drawn from it to each unit count will produce518

an expected L1 error matching the average Eavg observed across the runs.519
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7.3 The role of small precincts520

Practitioners who use ER have raised two questions regarding the effect of differential privacy:521

(1) How robust will the estimate be after the noising? (2) Will noising diminish the estimate522

of candidate support from a minority population? We analyzed the effects of TopDown and523

ToyDown on the 2018 Texas Democratic primary runoff election, where Lupe Valdez was a524

clear minority candidate of choice in Dallas county.1525

We begin by observing that of the 827 precincts in Dallas County, 201 have fewer than526

10 cast votes from that election day—in fact, 99 precincts recorded zero cast votes. These527

precincts are a big driver of instability under DP. This is not surprising; percentage swings528

are much higher in small numbers even if the noise injected might be low. However, down-529

weighting these small precincts makes the estimate almost always agree with the un-noised530

estimate. Specifically, we assign weights to the precincts equivalent to the number of total531

votes in the precinct. Figure 5 shows how the estimates vary by run type and data treatment.532

8 Conclusion533

The central goal of this study has been to take the concerns of redistricting practitioners534

seriously and to investigate potential destabilizing effects of TopDown on the status quo. A535

second major goal is to make recommendations, both to the Disclosure Avoidance team at536

the Census Bureau and to the same practitioners—the attorneys, experts, and redistricting537

line-drawers in the field. Texas generally, and Dallas County in particular, was selected538

because it has been the site of several interesting Voting Rights Act cases in the last 20539

years.2540

Our top-line conclusion is that, at least for the Texas localities and election data we541

examined, TopDown performs far better than more naive noising in terms of preserving542

accuracy and signal detection for election administration and voting rights law. Perhaps543

more importantly, we have created an experimental apparatus to help other groups conduct544

independent analyses.545

This work has led us to isolate several elements of common redistricting practice that lead546

to higher-variance outputs and more error under TopDown. The first example is the common547

use of a full precinct dataset, with no population weighting, in running racial polarization548

inference techniques. The second major example is the use of the smallest available units,549

census blocks, for building districts of all sizes, with no particular priority on intactness550

for larger units of Census geography. In both cases, we find that these were already likely551

sources of silent error. Filtering small precincts (or, better, weighting by population) and552

building districts that prioritize preserving whole the largest units that are suited to their553

scale are two examples of simple updates to redistricting practice. Besides being sound on554

first principles, these adjustments can insulate data users from DP-related distortions and555

help safeguard the important work of fair redistricting.556

1 We also examined the general elections for President in 2012 and Comptroller in 2018, with similar
findings.

2 This is a large county with considerable racial and ethnic diversity. Follow-up work will consider smaller
and more racially homogeneous localities.



A. Cohen, M. Duchin, JN Matthews, and B. Suwal 5:17

References557

1 13 U.S.C. Section 9. URL: https://www.law.cornell.edu/uscode/text/13/9.558

2 John Abowd, Daniel Kifer, Brett Moran, Robert Ashmead, Philip Leclerc, William559

Sexton, Simson Garfinkel, and Ashwin Machanavajjhala. Census topdown: Differentially560

private data, incremental schemas, and consistency with public knowledge. 2019. URL:561

https://github.com/uscensusbureau/census2020-dase2e/blob/master/doc/20190711_562

0945_Consistency_for_Large_Scale_Differentially_Private_Histograms.pdf.563

3 Avery v. Midland County, 390 U.S. 474 (1968).564

4 U.S. Census Bureau. Disclosure avoidance system - End to End demonstration. URL:565

https://github.com/uscensusbureau/census2020-das-e2e.566

5 U.S. Census Bureau. Disclosure avoidance system - End to End demonstration,567

L1 metric. URL: https://github.com/uscensusbureau/census2020-das-e2e/blob/568

3f2c9cf9cb3c33a4e2067bd784ff381792f7ffc0/programs/validator.py#L20.569

6 U.S. Census Bureau. TopDown: Adding Geometric Noise to Counts.570

URL: https://github.com/uscensusbureau/census2020-das-e2e/blob/571

d9faabf3de987b890a5079b914f5aba597215b14/programs/engine/topdown_engine.py#572

L678.573

7 U.S. Census Bureau. 2010 Demonstration Data Products, 2010. URL: https://www.574

census.gov/programs-surveys/decennial-census/2020-census/planning-management/575

2020-census-data-products/2010-demonstration-data-products.html.576

8 U.S. Census Bureau. 2010 Census Summary File 1, 2012. URL: https://www.census.gov/577

prod/cen2010/doc/sf1.pdf.578

9 U.S. Census Bureau. Census P.L. 94-171 Redistricting Data, 2017. URL: https://www.census.579

gov/programs-surveys/decennial-census/about/rdo/summary-files.html.580

10 Daryl DeFord, Moon Duchin, and Justin Solomon. Recombination: A family of markov chains581

for redistricting. arXiv preprint arXiv:1911.05725, 2019.582

11 Irit Dinur and Kobbi Nissim. Revealing information while preserving privacy. In Proceedings583

of the twenty-second ACM SIGMOD-SIGACT-SIGART symposium on Principles of database584

systems, pages 202–210, 2003.585

12 Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to586

sensitivity in private data analysis. Halevi S., Rabin T. (eds) Theory of Cryptography. TCC587

2006. Lecture Notes in Computer Science, 3876, 2006.588

13 Peter Wayner JN Matthews, Bhushan Suwal. Accompanying GitHub repository. URL: https:589

//github.com/mggg/census-diff-privacy.590

14 Denis Kazakov. Census Scripts GitHub repository, 2019. URL: https://github.com/591

94kazakov/census_scripts.592

15 U.S. Census Bureau Michael Hawes. Differential Privacy and the 2020 Decennial Census, 2020.593

URL: https://www2.census.gov/about/policies/2020-03-05-differential-privacy.594

pdf.595

16 National Conference of State Legislatures. 2010 Redistricting Deviation Table. URL: https:596

//www.ncsl.org/research/redistricting/2010-ncsl-redistricting-deviation-table.597

aspx.598

17 Reynolds v. Sims, 377 U.S. 533 (1964).599

18 Wesberry v. Sanders, 376 U.S. 1 (1964).600

FORC 2021

https://www.law.cornell.edu/uscode/text/13/9
https://github.com/uscensusbureau/census2020-dase2e/blob/master/doc/20190711_0945_Consistency_for_Large_Scale_Differentially_Private_Histograms.pdf
https://github.com/uscensusbureau/census2020-dase2e/blob/master/doc/20190711_0945_Consistency_for_Large_Scale_Differentially_Private_Histograms.pdf
https://github.com/uscensusbureau/census2020-dase2e/blob/master/doc/20190711_0945_Consistency_for_Large_Scale_Differentially_Private_Histograms.pdf
https://github.com/uscensusbureau/census2020-das-e2e
https://github.com/uscensusbureau/census2020-das-e2e/blob/3f2c9cf9cb3c33a4e2067bd784ff381792f7ffc0/programs/validator.py#L20
https://github.com/uscensusbureau/census2020-das-e2e/blob/3f2c9cf9cb3c33a4e2067bd784ff381792f7ffc0/programs/validator.py#L20
https://github.com/uscensusbureau/census2020-das-e2e/blob/3f2c9cf9cb3c33a4e2067bd784ff381792f7ffc0/programs/validator.py#L20
https://github.com/uscensusbureau/census2020-das-e2e/blob/d9faabf3de987b890a5079b914f5aba597215b14/programs/engine/topdown_engine.py#L678
https://github.com/uscensusbureau/census2020-das-e2e/blob/d9faabf3de987b890a5079b914f5aba597215b14/programs/engine/topdown_engine.py#L678
https://github.com/uscensusbureau/census2020-das-e2e/blob/d9faabf3de987b890a5079b914f5aba597215b14/programs/engine/topdown_engine.py#L678
https://github.com/uscensusbureau/census2020-das-e2e/blob/d9faabf3de987b890a5079b914f5aba597215b14/programs/engine/topdown_engine.py#L678
https://github.com/uscensusbureau/census2020-das-e2e/blob/d9faabf3de987b890a5079b914f5aba597215b14/programs/engine/topdown_engine.py#L678
https://www.census.gov/programs-surveys/decennial-census/2020-census/planning-management/2020-census-data-products/2010-demonstration-data-products.html
https://www.census.gov/programs-surveys/decennial-census/2020-census/planning-management/2020-census-data-products/2010-demonstration-data-products.html
https://www.census.gov/programs-surveys/decennial-census/2020-census/planning-management/2020-census-data-products/2010-demonstration-data-products.html
https://www.census.gov/programs-surveys/decennial-census/2020-census/planning-management/2020-census-data-products/2010-demonstration-data-products.html
https://www.census.gov/programs-surveys/decennial-census/2020-census/planning-management/2020-census-data-products/2010-demonstration-data-products.html
https://www.census.gov/prod/cen2010/doc/sf1.pdf
https://www.census.gov/prod/cen2010/doc/sf1.pdf
https://www.census.gov/prod/cen2010/doc/sf1.pdf
https://www.census.gov/programs-surveys/decennial-census/about/rdo/summary-files.html
https://www.census.gov/programs-surveys/decennial-census/about/rdo/summary-files.html
https://www.census.gov/programs-surveys/decennial-census/about/rdo/summary-files.html
https://github.com/mggg/census-diff-privacy
https://github.com/mggg/census-diff-privacy
https://github.com/mggg/census-diff-privacy
https://github.com/94kazakov/census_scripts
https://github.com/94kazakov/census_scripts
https://github.com/94kazakov/census_scripts
https://www2.census.gov/about/policies/2020-03-05-differential-privacy.pdf
https://www2.census.gov/about/policies/2020-03-05-differential-privacy.pdf
https://www2.census.gov/about/policies/2020-03-05-differential-privacy.pdf
https://www.ncsl.org/research/redistricting/2010-ncsl-redistricting-deviation-table.aspx
https://www.ncsl.org/research/redistricting/2010-ncsl-redistricting-deviation-table.aspx
https://www.ncsl.org/research/redistricting/2010-ncsl-redistricting-deviation-table.aspx
https://www.ncsl.org/research/redistricting/2010-ncsl-redistricting-deviation-table.aspx
https://www.ncsl.org/research/redistricting/2010-ncsl-redistricting-deviation-table.aspx


5:18 Census TopDown: The Impacts of Differential Privacy on Redistricting

A ToyDown and TopDown601

ToyDown is described in Algorithm 2. It uses the Laplace distribution Lap(b) with scale602

parameter b, i.e., the probability distribution over R with mean zero and probability density603

function P[L] = 1
2b e−|L|/b. It has variance 2b2. TopDown uses the geometric distribution, a604

discretized version of the Laplace distribution with integer support.605

The inputs to TopDown are as follows. AH,T = {ah,t}h∈H,t∈T , where ah,t is the number606

of people in h of type t; W = (Q1, . . . , Q|W |) is a workload consisting of a collection of607

histograms Q; ε = (ε1, . . . , εd) is a hierarchical allocation of the privacy budget, with εℓ > 0608

at each level; B : W → [0, 1] with
∑

Q∈W B(Q) = 1 is a probability vector describing the609

relative privacy budget on each histogram in the workload; invariants V ; and structural610

inequalities S. We write ah = {ah,t}t∈T (and αh analogously). For a query q, we write611

q(ah) =
∑

t∈q ah,t (and q(αh) analogously).612

In the first stage (lines 2-5), a geometric random variable is added to the raw counts a to613

produce noised counts â. In the second stage (lines 6-8), the noised counts are adapted to614

the nearest integer values that meet a collection of equality and inequality conditions. These615

equalities and inequalities, over the real numbers, describe a convex polytope; therefore the616

post-processing can be thought of geometrically as a closest-point projection to the integer617

points in the convex body under L2 distance.618

The noising stages of both ToyDown and TopDown are ε-differentially private for ε =619 ∑d
ℓ=1 εℓ. In ToyDown, this stage can be viewed as generating a single histogram at each620

level ℓ using budget εℓ. Following the Census Bureau, we use bounded differential privacy,621

wherein the global sensitivity of histogram queries is 2. In TopDown, the budget at level622

ℓ is further divided among the |W | histograms Q in the workload, each receiving B(Q)εℓ623

of the budget. Because ToyDown’s post-processing is data independent, ToyDown is ε-DP.624

TopDown’s post-processing is not data independent: the invariants and structural inequalities625

may depend on the original data.626

Algorithm 1 TopDown, based on [2]

1: procedure TopDown(AH,T , ε1, ε2, . . . , εd, W , B, V , S)
2: for h ∈ H, Q ∈W , q ∈ Q do
3: β ← exp(−B(Q) · εℓ(h)/2)
4: Gh,q ← Geom(β) ▷ See [6]
5: âh,q ← q(ah) + Gh,q ▷ Geometric mechanism with

sensitivity 2, budget B(Q) · εℓ(h)

6: for ℓ = 1, . . . , d do
7: Compute hierarchically-consistent ▷ A sophisticated heuristic algorithm

non-negative integers {αh,t}h∈Hℓ,t∈T out of scope for this work
minimizing

∑
h∈Hℓ

∑
q∈Wℓ

(q(αh)− âh,q)2,
subject to the invariants: v∗(αh) = v∗(ah) for all h ∈ Hℓ, v ∈ V

and structural inequalities: s(αh, ah) ≤ 0 for all h ∈ Hℓ, s ∈ S

8: return {αh,t}h∈H,t∈T
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Algorithm 2 ToyDown

1: procedure ToyDown(AH = {ah}h∈H , ε1, ε2, . . . , εd) ▷ (Single attribute)
2: for h ∈ H do
3: Lh ∼ Lap(2/εℓ(h))
4: âh ← ah + Lh ▷ Laplace mechanism with sensitivity 2, budget εℓ(h)

5: for ℓ = 1, . . . , d do
6: Compute hierarchically consistent {αh}h∈Hℓ

minimizing
∑

h∈Hℓ
(αh − âh)2

7: return {αh}h∈H

8: procedure MultiAttrToyDown(AH,T = {ah,t}h∈H,t∈T , ε1, ε2, . . . , εd)
9: for h ∈ H, t ∈ T do

10: Lh,t ∼ Lap(2/εℓ(h))
11: âh,t ← ah,t + Lh,t ▷ Laplace mechanism with sensitivity 2, budget εℓ(h)

12: for ℓ = 1, . . . , d do
13: Compute hierarchically consistent

(optionally, non-negative) {αh,t}h∈Hℓ,t∈T

minimizing
∑

h∈Hℓ,t∈T (αh,t − âh,t)2

14: return {αh,t}h∈H,t∈T

B Detailed materials and methods627

B.1 Primary data sources628

2010 US Census demographic data was downloaded using the Census API, and the 2010629

census block, block group, and tract shapefile for Dallas County were downloaded from630

the US Census Bureau’s TIGER/Line Shapefiles. For our VRA analysis, we obtained both631

statewide election results and a statewide precinct shapefile from the Texas Capitol Data632

Portal, which we then trimmed to the precincts within Dallas County.3633

We use a person-level dataset obtained by applying a reconstruction technique to the634

block-level data from Texas from the 2010 Census.4 The reconstructed microdata records635

contain block-level sex, age, ethnicity, and race information consistent with a collection of636

tables from 2010 Census Summary File 1. We note that this reconstruction follows the same637

strategy used by the Census Bureau itself as the first step of its reidentification experiment638

[15], based on [11].639

The reconstructed data is far from perfect. Unlike the Bureau, we do not have access640

to the ground truth data needed to quantify the errors. The Bureau’s own reconstruction641

experiment reconstructed 46% of entries exactly, plus an additional 25% within ±1 year642

error in age [15]. We note that our reconstructed data contains no household information,643

because this was not present in the tables used in the constraint system. This is significant644

because the TopDown configurations for the US Census Bureau’s 2010 Demonstration Data645

Products [7] include household-based workload queries and invariants.646

3 Data comes from data.capitol.texas.gov/topic/elections and data.capitol.texas.gov/topic/geography.
4 A team led by data scientist and journalist Mark Hansen at Columbia, including Denis Kazakov,

Timothy Donald Jones, and William Reed Palmer, designed an algorithm to solve for the detailed data,
which we describe in this section. Code is available upon request [14].

FORC 2021

https://data.capitol.texas.gov/topic/elections
https://data.capitol.texas.gov/topic/geography


5:20 Census TopDown: The Impacts of Differential Privacy on Redistricting

B.2 TopDown configuration647

The exact configuration files and code for all the runs are available in this paper’s accompanying648

repository [13]. The TopDown code used for this paper was modified from the publicly649

available demonstration release of the US Census Bureau’s Disclosure Avoidance System650

2018 End-to-End test release [4]. The input data fed to the algorithm was obtained by651

restructuring the reconstructed 2010 block-level Texas microdata into the 1940s IPUMs652

data format. Most importantly, the reconstructions allowed for 63 distinct combination of653

races whereas the End-to-End release only allows for 6 races, so all multi-racial entries were654

re-categorized as Other in our TopDown runs.655

Because TopDown’s post-processing is done level by level, the noisy counts in Dallas656

County do not depend on the noisy counts at the tract-level or below in counties other than657

Dallas. We modified the census reconstructed data to focus on Dallas county and minimize658

the computation time spent processing the other 253 counties in Texas. Specifically, for every659

non-Dallas county, we placed all of the population into a single block.660

We do not enforce certain household invariants that the Census Bureau is planning to661

enforce, and our workload omits household queries that are used in Census’s demonstration662

data products. Our choice to omit household queries and invariants is result of our use of663

reconstructed 2010 census microdata which does not include household information. We664

did perform additional runs with household invariants and queries using crude synthetic665

household data, the results of which are available in the data repository accompanying this666

paper [13]. In those runs, the population in each block was grouped into households of size 5667

with at most one group smaller than 5. Ultimately, we focused on the experiments that did668

not require synthetic household data.669

The TopDown runs without the household workload or invariants use a workload consisting670

of two histograms: Qdetailed and Qva,eth,race with 10% and 90% of the budget respectively.671

(The additional runs with households includes an additional households and group quarters672

histogram in the workload assigned 22.5% of the budget, leaving 10% and 67.5% for Qdetailed673

and Qva,eth,race respectively.) The End-to-End TopDown code reports a differentially private674

estimate of the L1 error with ε = 0.0001 not included in privacy budget specified elsewhere675

in the configuration file and discussed elsewhere in this paper.676

C District fragmentation677

Algorithm 3 Greedy

1: procedure Greedy(H, k)
2: if k = 1 then
3: Return H

4: N ← ⌊|Hd|/k⌋, D ← ∅, h∗ ← h1
5: while N > 0 do
6: For h∗ and D, let S(h∗, D) be the set of

children h of h∗ that are disjoint from D.
7: while ∃h ∈ S(h∗, D) : |h| ≤ N do
8: D ← D ∪ h ▷ Associating h with the blocks descendent from it
9: N ← N − |h|

10: Pick h∗ ∈ S(h∗, D)
return D
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Algorithm 4 Square

1: procedure Square(H, k)
2: sd ←

√
|Hd|/k ▷ Side length in blocks of the district

3: Sd ←
√

n1 · n2 · · ·nd−1 ▷ Side length in blocks of the region
4: Sample i, j ∈ {1, . . . , Sd − sd + 1} uniformly at random
5: return Di,j , the square district with top left corner at (i, j)

In Section 6, we defined the fragmentation score and its relationship to error variance for678

ToyDown, and analyzed the expected fragmentation score of districts produced by different679

district drawing algorithms. Now we apply TopDown to examine the relationship between a680

district’s population error and geometry, as captured by the fragmentation score.681

We fix the a total budget and an equal allocation across levels: 0.2 = ε2 = ε3 = ε4 = ε5 =682

ε6, as in Table 1. (We do not need to noise the nation because we are focusing on Texas; we683

do need to noise Texas even though its total population is invariant, because its population684

by race is allowed to vary.) We apply ReCom to build districts out of tracts, block groups,685

and blocks—all of which are part of the census hierarchy—and add a realistic variant that686

builds from whole precincts. These are about the same size as block groups and are more687

commonly used in redistricting.688

Figure 6 Do the building-block units of districts matter? Histograms of fragmentation score
(left column) and mean error magnitude (right column) are shown across four district-drawing
algorithms that prioritize compactness. (Dallas County, k = 4.) We see that using larger units leads
to significantly lower fragmentation and correspondingly low district-level error in ToyDown, but the
advantage erodes when we pass to TopDown.
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Figure 6 plots the data from our experiments. Each of the 12 histograms displays 400689

values, one for each district drawn by the specified district-drawing algorithm. The histograms690

on the left plot the fragmentation score of each district; the histograms on the right plot the691

mean observed district-level population error magnitude over 16 executions of the specified692

hierarchical noising algorithm.693

The size of the constituent units is observed to have a controlling effect on the fragmentation694

score, as expected. As we would expect, this carries over to the simplest ToyDown (allowing695

negativity). (Note that since the error has zero mean, higher variance drives up the mean696

magnitude of error.) But the choice of base units makes far less difference by the time we697

move to full TopDown. These observations are consistent, again, with a strong similarity698

across spatially nearby units. All four kinds of ReCom will tend to produce compact, squat699

districts whose units are more closely geographically proximal than would be observed with700

disconnected or elongated shapes. Random noise is uncorrelated, but the post-processing701

effects can be highly spatially correlated because of spatial relationships in the underlying702

counts by race, ethnicity, and voting age.703

D Robustness of noisy ER704

Figure 7 extends the findings from Figure 5 with more splits and allocations, showing that705

as long as small precincts are filtered out, ecological regression for RPV analysis in Dallas706

County is robust to changes in the allocation of the privacy budget across the levels of the707

hierarchy and the total privacy budget for TopDown. The corresponding plots for ToyDown708

are essentially indistinguishable. (ER with precincts weighted by population is similarly709

robust.)710

Ecological regression
equal split block-heavy tract-heavy

ε
=

0.
5

ε
=

2

Point estimates
equal split block-heavy tract-heavy

Figure 7 Ecological regression for the Valdez-White runoff election with ε = .5 and ε = 2
and three different budget allocations, together with corresponding point estimates for Latino and
non-Latino support for Valdez, with small precincts filtered out as in Figure 5. Findings stay
remarkably stable.
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