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Abstract

In recent years, computers have been used to generate ensembles of districting plans: collec-
tions of large numbers of electoral maps that are used to assess a proposed map in the context of
valid alternatives. Ensemble-based outlier analysis has played a central role in recent redistrict-
ing disputes, especially regarding partisan gerrymandering. Until now, methods for generating
these ensembles have enforced districting rules that are relatively simple to assess, such as popu-
lation equality, but have not contended with more complex ones, such as the prohibitions against
racial gerrymandering and minority vote dilution that flow from the Constitution and the Voting
Rights Act (VRA). We take up the task of building ensembles of plans that respect those legal
constraints. Rather than relying on demographic data alone, our method uses precinct-level re-
turns from a large collection of recent primary and general elections. With this electoral history,
we build effectiveness scores that identify districts where members of minority groups have had
realistic opportunities to nominate and elect their preferred candidates. In a case study of Texas
congressional districts, we find that detailed election data is indispensable to assessing a map’s
effectiveness for minority voters. Purely demographic targets, such as demanding some specific
number of majority-minority districts, not only raise constitutional concerns but also are inad-
equate proxies for empirical effectiveness. Beyond the primary task of building VRA-conscious
ensembles for comparison, we also repurpose the same algorithmic search methods to find plans
that dramatically increase minority electoral opportunities. In Texas, for example, the current
enacted 36-district congressional plan has perhaps 11 to 13 districts that are effective for Latino
voters, Black voters, or both. We find that better mapmaking could raise that number to at
least 16 without sacrificing traditional principles such as contiguity and compactness. This
would nearly eliminate the historic underrepresentation of both groups throughout the state.

1 Introduction

Today, only 107 Representatives in Congress—fewer than a quarter of all House members—belong
to a racial or language minority group.1 If those groups were represented in proportion to their
share of the Nation’s adult citizen population, that number would increase to 144 Representatives.2

And this sub-proportional representation is not confined to Congress, but is replicated today in
47 of the 50 state legislatures.3 There are two strands of conventional wisdom on the causes of
this shortfall in minority representation. Either districters simply are not trying hard enough, or
entrenched patterns of racial polarization in housing and voting make proportionality impossible
to attain.

1Bialik (2019). This figure refers to the 116th Congress (2019–2021).
2This number is based on 2019 one-year ACS data, U.S. Bureau of the Census (2019a), figured as the share of

citizen voting-age population comprising those who are either Hispanic/Latino or from a non-White racial group.
3See U.S. Bureau of the Census (2019b); National Conference of State Legislatures (2020). Putting those sources

together, the three exceptions are Arizona (34.4% minority citizen voting-age population vs. 38% minority legislators),
Hawaii (73.2% vs. 76%), and Ohio (16.7% vs. 18%).
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This Article explores a third option: perhaps better tools can bring better results. Our algo-
rithmically generated ensembles—collections of thousands or millions of alternative maps—show
that better-designed redistricting plans could close much (though not all) of that gap and ensure
that the House of Representatives and state legislatures “look more like America” than at any time
in our history.

The tools to study this issue comprehensively did not exist as recently as a decade ago, when the
50 states last redistricted. Since then, algorithmic innovation and steadily improving computational
power have revolutionized our ability to understand the variety of redistricting plans that could
plausibly be enacted. It is now possible to generate a multitude of diverse, valid plans on a laptop
overnight—and to describe how they are distributed in the universe of all possibilities. That in
turn allows any plan, including one proposed for adoption, to be compared meaningfully to the
available alternatives.

Not surprisingly, work in this direction has come to dominate some types of redistricting litiga-
tion in the last few years, especially lawsuits claiming that a districting plan is excessively partisan.
But until now, ensemble methods have not seriously grappled with issues of race in redistricting.
And these tend to be the most heavily litigated issues in the field, due to the demands imposed by
the Voting Rights Act (VRA) and the Constitution’s Equal Protection Clause. The legal rules ad-
dressing race in redistricting are much more complex than, say, the “one person, one vote” doctrine
in federal constitutional law, or the contiguity requirements in state constitutional law. Modeling
the racial rules is far from straightforward.

This Article takes up that task. First, we develop methods that incorporate the legal rules
involving the consideration of race in redistricting into the algorithms that generate redistricting
ensembles. The main applications of these VRA-conscious ensembles would be to study the normal
range of attributes of lawful plans, for instance to assess claims of partisan gerrymandering. Sec-
ond, we show that the methods used to accomplish that task can also be used to draw maps that
increase opportunities for minority groups to elect candidates of their choice. As it turns out, there
is the potential to provide much more opportunity, at least in some states, than was previously
recognized. In short, the algorithmic creation of redistricting ensembles holds the promise of not
only sharpening our understanding of redistricting choices and tradeoffs, but also better fostering
the aims of the Voting Rights Act, “a statute meant to hasten the waning of racism in American
politics” (Johnson v. De Grandy, 1994, 1020).

To that end, one of our strongest findings deserves particular emphasis. In the past, the dom-
inant method of looking for effective minority electoral opportunity has been to use district de-
mographics as a proxy, such as by seeking majority-Black districts to secure effective electoral
opportunities for Black voters. But in our case studies, demographic share alone is a poor proxy
for effectiveness; relying too heavily on demographics could inadvertently disempower minority
citizens by packing them into too few districts.

Our methods will be most helpful for proactive legislatures and commissions that wish to draw
legally defensible maps that will prove effective for racial and language minority groups while
upholding other criteria simultaneously. The tools described here will generate examples of maps
with valuable properties and will help elucidate the cost in minority electoral opportunity, if any,
that results from strict application of lower-ranked criteria. Although these tools also may be
helpful to plaintiffs who wish to challenge existing maps under the VRA, that use case is not our
main focus.

We will use three main elements: a Markov chain procedure that proposes successive modi-
fications to districting plans, an ecological-inference procedure that identifies minority-preferred
candidates based on precinct-level historical election data matched to demographics, and a bench-
mark plan from which we can establish a presumptively acceptable number of effective districts.
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Below, for our proof of concept, we will use a spanning-tree recombination procedure for the first
element, a hierarchical Bayesian model for the second, and an enacted plan that has survived VRA
scrutiny for the third4—but we emphasize that the main contribution of the current Article is the
overarching protocol, which is designed to be modular, letting users substitute in other alterna-
tives to play these three roles. Combining these elements, our protocol defines effective districts for
minority groups at any given threshold of confidence.

Article Outline. We begin in Section 2 with a review of the burgeoning science of redistricting
ensembles. Section 3 summarizes the legal rules governing the consideration of race and racial
data in redistricting. Section 4 sets forth our VRA-conscious ensemble protocol, relying on recent
election data to generate effectiveness scores that rate each district’s likelihood of nominating and
electing minority-preferred candidates. Section 5 applies this protocol to congressional redistricting
in Texas, where both Latino and Black residents are numerous enough to require VRA attention.
Section 6 applies techniques from statistics and machine learning to the Texas results to show the
importance of using detailed electoral data. And Section 7 concludes with a clear proof of concept
showing that the long-standing underrepresentation of minority voters in Texas, far from being an
immutable fact, can be addressed through proactive mapmaking.

Finally, we have made the corresponding software tools available for public use in our GitHub
(MGGG Redistricting Lab, 2020a) and through a user-friendly portal at districtr.org/VRA.

2 Ensemble methods: algorithms for creating districting plans

As Justice Kagan explained in her dissent in Rucho v. Common Cause (2019, 2517–23), a computer
equipped with an algorithm that generates a huge number of redistricting plans could potentially
create a baseline to help answer questions like:

• What is an extreme, or unfair, number of Republican (or Democratic) districts, given the
partisan composition and political geography of the state’s voters? or,

• What would be a typical number of competitive districts, given those same parameters? or,

• Given the new census data, can a plan comply with the “one person, one vote” principle
without pairing two incumbents’ homes in the same district?

And as we will soon demonstrate, an ensemble approach also can help us address questions like:

• What is a fair map for Latino and Black voters?

2.1 Illustrative example: Iowa

To see the power of redistricting ensembles, let’s consider the case of Iowa. According to the 2010
census, Iowa’s 99 counties contained 216,007 census blocks and 3,046,355 residents—enough for
four congressional districts. Iowa’s constitution simplifies the redistricting problem by mandating
that “no county shall be divided in forming a congressional district,” so drawing our four districts
requires assigning only the 99 counties (Iowa Const. art. III, § 37). We might hope to approach
the task of finding fair plans by first building all possible plans, and comparing a particular plan
to the full set.

4As described below, we use an implementation called GerryChain for plan generation, we use eiPack for ecological
inference, and we use the current enacted Texas congressional map as our VRA benchmark.
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But even this modest problem of dividing 99 counties into four connected parts (four contiguous
districts) is currently out of reach: no one has yet been able to find a precise answer for this problem
by computer, even with a clever enumeration algorithm and a month of computing time.5

This problem is only compounded in most states, which build their districts from census blocks
(on average, there are more than 2,000 blocks per county). The full enumeration is subject to what
is called combinatorial explosion, and the associated counting problem has forbidding complexity.
This means not only that we lack the computing power to enumerate all plans today, but that
computers likely will never be able to do so.

A second issue is that most plans in a complete enumeration would be irrelevant to the practical
problem of redistricting because they would be blatantly unlawful. This is illustrated in Figure 1.
The plan on the left, in which the biggest district has more than 750 times the population of the
smallest one, would patently violate the Federal Constitution’s “one person, one vote” doctrine.6

This means that districting plans with large population inequalities are of no practical interest, so
a useful ensemble should exclude them.

Figure 1: These two partitions of Iowa into four connected pieces are not plausible for adoption as
districting plans. The first has nearly all the state’s population in a single large (green) district.
The second more closely balances each district’s population, but would likely violate Iowa law’s
compactness requirement.

The map on the right has much better population balance, but it also falls outside the plausible
zone for plans. Its blue G-shaped district (“G” for gerrymandering) flaunts the mapmaker’s disre-
spect for the traditional districting principle of compactness, which Iowa law explicitly safeguards
(Iowa Code § 42.4.4).

Good ensemble methods allow us to draw a representative sample of compact, contiguous,
population-balanced plans from the full space of possibilities—that is, a sample distributed in a
known way that is suited to the law. By appealing to this sample, we can hope to address questions
of partisan fairness, competitiveness, racial fairness, and all the other concerns and values we bring
to bear on redistricting. To illustrate this methodology, we generated a sample of 100,000 valid Iowa
congressional maps by the recombination method explained below in §4.2, without taking partisan

5Indeed, even the simpler problem of partitioning a 9 × 9 grid into nine districts of nine units each has
706,152,947,468,301 solutions. See mggg.org/table.html.

6A district-to-district population difference greater than 10% of the ideal district size is presumptively unconsti-
tutional under the Fourteenth Amendment; for congressional districts, the standard is far stricter, under Article I of
the Constitution (Brown v. Thomson, 1983, 842–48; Karcher v. Daggett, 1983, 730–44). The malapportioned plan
in Figure 1 has top-to-bottom deviation nearly as large as the whole state, or close to 400% of ideal district size.
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data into account.7 This lets us compare the enacted plan against these alternatives in terms of
votes cast for President in the November 2016 election, say. In our ensemble of compact, contiguous,
population-balanced plans, nearly 75% have one safe Republican seat and three competitive seats
(using a 55% majority as the line between competitive and safe). The current enacted plan has
one heavily Trump-favoring district and three competitive ones, putting it in the largest category.
This does not tell us by any stretch that the current plan is ideal or fair, but it does tell us that
this plan is not an outlier by this way of measuring partisanship. This illustrates an elementary
use of ensembles to benchmark partisan lean and competitiveness.

Similarly, ensembles can help us study how plans made without regard to race might tend to
distribute a state’s minority populations across districts, merely as a function of human geography.
This racial baseline has been studied in a range of reports and papers, including MGGG Redistrict-
ing Lab, 2018d,a, 2019b,a; DeFord and Duchin, 2019; Duchin and Spencer, 2021. But exploring the
distribution of racial-group members in an ensemble is a different task from building an ensemble
that takes VRA compliance into account. We will turn to that task shortly.

2.2 Building ensembles

Ensemble methods backed by powerful computers have proliferated in the last decade. Large
ensembles of alternative plans proved critically important in federal-court cases invalidating extreme
partisan gerrymanders in Ohio and Michigan (before the Supreme Court in Rucho held these claims
nonjusticiable in federal courts) and more recently in similar state-court cases in Pennsylvania and
North Carolina (Rucho v. Common Cause, 2019, 2493–508; League of Women Voters of Mich. v.
Benson, 2019, 893–908; Ohio A. Philip Randolph Institute v. Householder, 2019, 1025–62, 1082–85;
League of Women Voters v. Commonwealth, 2018, 770–81; Common Cause v. Lewis, 2019, 17–43,
80–96).

Past ensemble methods used in litigation have focused on generating plans while controlling
population balance, contiguity, compactness, and sometimes county and municipality integrity.
Generating large ensembles while accounting in some way for these legitimate districting criteria
helped judges decide whether one political party’s disproportionate successes were due to the state’s
geographic features and the distribution of its voters—or to partisan manipulation of district lines.
But in building their ensembles, the experts who testified in these cases did not seriously grapple
with the legal requirements involving the consideration of race in redistricting.

In the Wisconsin case, for example, Democratic plaintiffs brought partisan-gerrymandering
claims against a state Assembly plan that had resulted in Republicans winning 60 or more of the
99 seats, even in elections where Democratic candidates collectively received more votes than their
Republican counterparts. In work prepared for the litigation and described in a subsequent article
(Chen, 2017), political scientist Jowei Chen built an ensemble of alternative Assembly plans to help
evaluate the enacted plan and to demonstrate that the heavy advantage that Republicans enjoyed
under that plan did not result inevitably from the political geography of the state’s voters. Chen
generated an ensemble of plans that altered boundaries for 92 of the 99 districts, while “freezing”
seven heavily minority districts in and around Milwaukee, one of which had been ordered into effect
to remedy a VRA violation.

Likewise, in the North Carolina cases, the experts’ ensembles relied on proxies for districts’
effectiveness for minority voters. For example, consider the work of one plaintiffs’ expert, mathe-
matician Jonathan Mattingly, as described in a subsequent article by his research group (Herschlag
et al., 2020). Mattingly’s work in North Carolina used demographic targets of 44.48% and 36.20%

7ReCom always produces contiguous, balanced districts, and favors compact districts for reasons explained below
in Section 4.2.
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Black population for two congressional districts—the precise levels found in the enacted plan that
the plaintiffs were challenging. He then built an ensemble by iterating a random step biased to
favor plans that hit those demographic targets.8 In addition to the effects of this tilted search, he
discarded plans that fell short of those targets from the final ensemble presented in court, so that
the prescribed population levels served as a minimum for all included plans.

In the context of these mid-decade partisan-gerrymandering cases, the experts’ decisions to
de-emphasize VRA complexities were understandable. The litigation, after all, focused on party,
not race, and lawful VRA-compliant districts were already in place. But at the beginning of a new
decade, with fresh census results available, that option will be foreclosed, as the minority districts
from the previous map will have become either over- or under-populated due to population shifts
and will thus violate “one person, one vote.” So the minority districts (like all other districts) will
have to be redrawn to accommodate the new census data. When generating alternative plans to
create a baseline for comparison, redistricters will need to account for the delicate legal requirements
imposed by the VRA and the Constitution.

For techniques that have been implemented to build VRA requirements into redistricting en-
sembles, the literature review is brief. In a new Yale Law Journal article called The Race-Blind
Future of Voting Rights (Chen and Stephanopoulos, 2021), Jowei Chen and legal scholar Nick
Stephanopoulos take the problem of identifying suitable VRA districts head-on, defining a minor-
ity opportunity district by using a combination of partisan data (returns from the 2012 presidential
general election) and demographic data (voting-age population from the 2010 census). In partic-
ular, they define a minority opportunity district to be one in which (1) the candidate of choice
(typically Obama) carried the district in the general election and (2) most of the candidate’s sup-
port is estimated to have come from minority voters. This is somewhat closer in spirit to the
method proposed here, though this Article draws dramatically different conclusions from theirs.9

Our method for measuring district effectiveness, described in §4 below, will draw on a much
larger collection of recent elections, pairing a primary with each general. The outcomes from these
elections are the essential components of our effectiveness scores. And in §6 we will show that the
scores we develop cannot be well approximated by considering only a district’s partisan lean and
demographics.

2.3 Using ensembles

As we develop techniques for building VRA-conscious ensembles, there are two important general
caveats about how and how not to use these ensembles.

Comparison, not selection. Our protocol is not designed to simulate the nuanced judgment of
a seasoned voting-rights attorney. Rather, as we generate a chain of thousands of maps, we need
a fast and reliable rough cut for VRA compliance. Our protocol uses a random iterative process
in which districting plans are proposed, weighed, and potentially accepted into our ensemble of
plans. We will be designing an in-or-out criterion that can be assessed in a fraction of a second.
It is too much to expect perfection in excluding all unlawful maps and including all lawful ones,
partly because the law itself is hardly a bright-line field. For example, even what seems like a
rule with a clear threshold, such as the constitutional prohibition against state-legislative plans
with population deviations greater than 10%, has exceptions in case law (Cox v. Larios, 2004;

8Mattingly’s method used a search procedure weighted to favor plans with better scores, based on a combination
of population balance, compactness, county integrity, and nearness to his demographic targets for Black population.

9For their method’s details, see the full description in Chen and Stephanopoulos (2021). For a critique of their
definition of minority opportunity districts and its application, see Duchin and Spencer (2021).
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Unger v. Manchin, 2002). Nonetheless, an ensemble that includes most of the lawful maps that are
proposed in the chain and rejects most of the unlawful ones will suffice for our goals of comparison
and benchmarking. Ensembles should not be regarded as supplies of plans ready for immediate
adoption; they are not likely to be good plans without extensive human vetting and adaptation.

Normal range, not ideal. We advocate using redistricting ensembles to learn a normal range
for metrics and measures under the constraints of a set of stated redistricting rules and priorities.
Ensembles allow us to justify statements such as Plan X is an outlier in its partisan lean, taking
all relevant rules into account. While talking about normal ranges and outliers, we should avoid
the temptation to valorize the top of the bell curve (or its center of mass, or any other value) as an
ideal. By analogy, we can talk about people who are unusually tall or short without believing that
any height is most desirable or ideal. If the 50th percentile height for American women is 5’4” and
the 99th percentile height is 5’10”, we can conclude that a woman who is six feet tall is unusual,
and we can look for reasons (family history, diet, and so on) to explain her height. But it would
be quite strange to decide that a woman who is 5’4” is a “better” height than one who is 5’5”.

Justice Kagan’s Rucho dissent skirted the edge of this temptation. She mostly reasoned from
ensembles just as we will recommend here, envisioning a bell curve (in that case, of partisan
advantage) and describing plans far from the bulk of the curve as presumptively impermissible:
“The further out on the tail, the more extreme the partisan distortion and the more significant the
vote dilution” (Rucho v. Common Cause, 2019, 2518). But in the course of describing the outlier
logic, she implied that plans “at or near the median” are the best of all. An outcome “smack dab
in the center” (in Justice Kagan’s words) may not be in any sense the most fair, however. For
instance, turning to the November 2012 Obama-Romney election as a touchpoint, Obama received
nearly 53% of the major-party vote in Iowa. Even if just over half the congressional plans in our
ensemble have three Obama-favoring districts out of four (making that the median outcome), we
might still reasonably consider a map with two Obama-favoring and two Romney-favoring districts
to have at least as strong a claim on fairness, given the nearly even vote split.

Likewise, there would be no reason to prefer a map that preserves intact a median number of
whole counties or municipalities. Indeed, some States’ redistricting laws expressly demand keeping
the greatest practicable number of counties or municipalities intact.

The same warning, to be wary of the magnetic attraction to the middle of a bell curve, surely
applies as well to racial fairness. If a state’s Latino, Black, Asian-American, and Native Ameri-
can residents have historically been (and currently remain) underrepresented, we should gravitate
toward solutions that fix the shortfall rather than perpetuate it. Fortunately, federal law pushes
redistricters in the right direction.

3 The law of race and redistricting

The rules regarding the consideration of race in redistricting flow primarily from two sources of
federal law: the Fourteenth Amendment’s Equal Protection Clause and Section 2 of the Voting
Rights Act, which Congress, exercising its power to enforce the Fifteenth Amendment, enacted in
1965 and significantly revised in 1982.

3.1 The Voting Rights Act prohibits minority vote dilution

Section 2 of the VRA prohibits a redistricting plan that abridges any citizen’s right to vote
“on account of race or color [or membership in a language-minority group]” (VRA, §§ 10301(a),
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10301(f)(2)). Minority plaintiffs can establish a violation of amended Section 2 by showing, “based
on the totality of circumstances,” that members of their racial or language-minority group “have
less opportunity than other members of the electorate” to “nominat[e]” and “elect representatives
of their choice” (VRA, § 10301(b)).

In assessing whether a redistricting plan provides equal electoral opportunity under amended
Section 2, Congress expressly permitted state redistricters and federal judges alike to consider
recent election outcomes, namely “[t]he extent to which members of a protected class have been
elected to office” (VRA, § 10301(b)). Nothing in Section 2, however, “establishes a right to have
members of a protected class elected in numbers equal to their proportion in the population.”
While electoral success for minority candidates is important, even more important under Section
2 is that the candidate be the “chosen representative” of a particular racial or language-minority
group, regardless of the candidate’s race or ethnicity (Thornburg v. Gingles, 1986, 68 (plurality
opinion)). And Section 2’s lodestar is “equality of opportunity, not a guarantee of electoral success
for minority-preferred candidates of whatever race” (Johnson v. De Grandy, 1994, 1014 n.11).
As the Supreme Court has explained, “minority citizens are not immune from the obligation to
pull, haul, and trade to find common political ground, the virtue of which is not to be slighted in
applying a statute meant to hasten the waning of racism in American politics” (Johnson v. De
Grandy, 1994, 1020).

In redistricting cases “the ultimate question [under Section 2] is whether a districting decision
dilutes the votes of minority voters” (Abbott v. Perez, 2018, 2332). District lines can dilute the
voting strength of politically cohesive minority-group members either by “cracking,” or dispersing,
them among multiple districts where they are routinely outvoted by a bloc-voting majority or by
“packing,” or concentrating, them into too few districts, wasting votes that could have mattered in
neighboring districts (Johnson v. De Grandy, 1994, 1007). Section 2 prohibits both cracking and
packing whenever district lines combine with social and historical conditions to impair the minority
group’s ability to elect its preferred candidates “on an equal basis with other voters” (Voinovich v.
Quilter, 1993, 153).

In jurisdictions where all sizable demographic groups (majority and minority alike) consistently
favor the same candidates, a redistricting plan cannot dilute minority citizens’ voting strength,
so Section 2 plays no role (Thornburg v. Gingles, 1986, 51). But in most states, where voting
is in varying degrees racially polarized, Section 2 can require replacing one or more districts that
elect candidates preferred by the majority (usually, a White majority) with districts that would
elect candidates preferred by one or more minority groups (Johnson v. De Grandy, 1994, 1008).
To prevail, Section 2 plaintiffs must prove that, under the challenged plan, a bloc-voting majority
usually will defeat “candidates supported by a politically cohesive, geographically insular minority
group” (Thornburg v. Gingles, 1986, 49). But even with such proof, plaintiffs’ challenge to a state
districting plan ordinarily will fail if the plan provides effective opportunities to nominate and elect
minority-preferred candidates in a number of districts roughly proportional to the minority group’s
share of the state’s citizen voting-age population, or CVAP (LULAC v. Perry, 2006, 436–38;
Johnson v. De Grandy, 1994, 1000).

One particularly useful—and simple—method for assessing minority electoral opportunities
under a districting plan is to add up the votes cast for each candidate in recent statewide primary
and general elections by district, to learn which districts gave more votes to the minority-preferred
candidate than to any other candidate (LULAC v. Perry, 2006, 428 (majority opinion), 493–94,
499–501 (Roberts, C.J., dissenting in part); Session v. Perry, 2004, 499–501). This approach is
particularly straightforward if each precinct is kept intact within a single district: simply adding
up the votes for each candidate in all of a district’s precincts shows, for each election, which
candidate carried the district. The most difficult part of these analyses, especially in primaries, is
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identifying the candidate who was minority-preferred in each election, which is typically performed
by a statistical-inference procedure comparing demographic patterns to voting patterns (King, 1997;
King, Rosen and Tanner, 1999; Elmendorf, Quinn and Abrajano, 2016). But we will take care to
place actual electoral history at the center of our assessment of district effectiveness, keeping the
role of statistical inference to a minimum.

3.2 The Equal Protection Clause prohibits excessive attention to race

Regardless of what techniques are used to assess minority electoral opportunities, compliance with
Section 2 necessarily requires detailed consideration of race and racial data. But a State’s consider-
ation of race is constrained by the Fourteenth Amendment mandate that “[n]o State shall . . . deny
to any person within its jurisdiction the equal protection of the laws” (U.S. Const. amend. XIV;
see Bethune-Hill v. Virginia State Bd. of Elections, 2017, 802). Starting in the 1990s in its Shaw
line of cases, the Supreme Court has identified at least two ways that the excessive use of race
can give rise to a presumptively unconstitutional racial gerrymander under the Equal Protection
Clause (Miller v. Johnson, 1995, 904–05, 910–17; Shaw v. Reno, 1993).

First, a bizarrely noncompact district is subject to strict scrutiny under that Clause if the
district’s boundary is “so irrational on its face that it can be understood only as an effort to
segregate voters into separate voting districts because of their race” (Shaw v. Reno, 1993, 658).
This type of racial predominance most often arises where a district’s perimeter is defined not by
the boundaries of intact precincts, for which electoral data exists, but by the boundaries of (much
smaller) census blocks that have been conspicuously sorted into or out of districts according to
their racial composition (Hebert et al., 2010, 66–68 & n.21; Alabama Legislative Black Caucus v.
Alabama, 2015, 274).

Second, although only a minority of Justices have stated that the intentional creation of a
majority-minority district should always be presumptively unconstitutional, a majority of the Court
has held that districts violated the Equal Protection Clause because they were drawn to “maintain
a particular numerical minority percentage” or to meet arbitrary or “mechanical racial targets.”
The Court has thus rejected a bald mandate that certain districts must have at least a 50% or a
55% Black voting-age population regardless of whether that percentage was actually shown to be
necessary for the district to nominate and elect minority-preferred candidates (Cooper v. Harris,
2017, 1469; Bethune-Hill v. Virginia State Bd. of Elections, 2017, 799, 801–02; Alabama Legislative
Black Caucus v. Alabama, 2015, 267, 275; Bush v. Vera, 1996, 969–72).

3.3 Implications for redistricting ensembles

These legal points have major implications for an ensemble-creation protocol keyed to compliance
with the VRA and the Constitution. As an initial matter, recalling the earlier point about ensembles
being far more useful for comparison than for selection, the focus here is on drawing a collection of
maps that would be relatively safe from challenges under VRA Section 2, rather than on crafting
a map for plaintiffs to propose when suing the State.

As a gatekeeping function before ultimately assessing the “totality of circumstances,” courts
generally require Section 2 plaintiffs to present an illustrative map showing that the minority group
in question could constitute a literal arithmetic majority of the voting-age population (VAP) in a
proposed district.10 The Supreme Court has noted, however, that a district that falls short of the

10See Bartlett v. Strickland, 2009, 6, 9–11, 20, 24–25, 26 (plurality opinion). Bartlett also may be satisfied with
a majority of the proposed district’s citizen voting-age population (CVAP). And Bartlett ’s 50% rule may not apply
if the defendant drew the challenged districts with discriminatory intent, as might well be the case when a State
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50% threshold yet can still nominate and elect minority-preferred candidates “can ... [and] should”
count as a minority-effective district when assessing a State’s compliance with Section 2 (Bartlett v.
Strickland, 2009, 24 (plurality opinion); see also Cooper v. Harris, 2017, 1470). So actual electoral
opportunity for minority groups—a track record of effectiveness in elections—is what matters when
defending a map against a VRA challenge.

Taken together, the legal points elucidated above in Sections 3.1 and 3.2 suggest three crucial
design principles for a VRA-conscious ensemble protocol.

(1) Ensure effectiveness in both primaries and generals. Aiming to weed out of an en-
semble plans that violate Section 2, while retaining plans that comply, a protocol must assess
whether particular districts will or will not be effective for minority-preferred candidates
seeking both nomination (in primaries) and election (in generals). This assessment requires
attention to both demographic data and actual election results, including precinct-level re-
turns from primary and general elections.

(2) Avoid a priori demographic targets. Threshold decisions about the composition of
districts should not be based on purely demographic targets—for example, requiring a certain
number of districts that are at least, say, 55% Latino or 50% Black. That approach not only
could lead to false positives or false negatives for district effectiveness, but could leave the
methodology vulnerable to constitutional attack for excessive race-consciousness.

(3) Maintain reasonable compactness. To further reduce constitutional exposure, the ensemble-
generating technique should admit few or no plans with bizarre district shapes.

We note that both the first and the third principles recommend the use of precincts, rather
than the much smaller census blocks, when assembling districts. Precinct-based plans promote
compactness and facilitate more accurate assessment of electoral history, which is fundamental to
evaluating district effectiveness. And though they may not achieve perfect population equality,
that fact usually should not present significant constitutional concerns.11

4 Design of a VRA-conscious ensemble protocol

In this section, we will describe the design of a protocol for generating redistricting plans that
comply with not only the criteria of population equality, contiguity, and reasonable compactness,
but also the race-related rules mandated by the VRA and the Equal Protection Clause. The protocol
begins with data preparation and culminates in the use of a constrained recombination algorithm
for generating plans that meet VRA-related requirements. We propose this as a sound and detailed
VRA-conscious algorithm, but not as the authoritative VRA algorithm. There may well be other
ways to incorporate the legal requirements around race, and to do it well. But the methods laid
out in this section come closer to the big-picture goal—building a representative sample of lawful
maps—than any previous work we know. We believe that this elaborated example of one concrete,
reasonable way to take account of race and the law helps illuminate some key decisions.

dismantles an existing minority-effective district.
11Using whole precincts will rarely raise “one person, one vote” concerns for state-legislative maps. However,

the Constitution imposes stricter population-equality standards for congressional maps (Karcher v. Daggett, 1983,
740-41). Although the most common current practice is to draw congressional plans so that the largest and smallest
districts differ by only one person, the Supreme Court has upheld plans with significantly larger deviations (Tennant
v. Jefferson County Comm’n, 2012, 762, 764–65; Abrams v. Johnson, 1997, 99–100). In any event, a map built from
whole precincts can usually be readily modified into a map with a minimal deviation by swapping a limited number
of census blocks between adjacent districts.
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We recall from above that the protocol is modular with respect to three ingredients: a procedure
for iteratively modifying districting plans (here, spanning-tree recombination), a procedure for iden-
tifying minority-preferred candidates (here, a Bayesian hierarchical model of ecological inference),
and a benchmark that prescribes a threshold number of effective districts for each minority group
(here, an enacted plan that has evaded or withstood VRA scrutiny). Our choices can be swapped
out for others as new methods or special circumstances warrant, leaving the overall structure intact.

4.1 Preparing data

4.1.1 Electoral and demographic data

We will require a cleaned precinct shapefile for the state, with election returns and demographic
data joined to those precincts.12 This can be difficult to obtain because precincts change from year
to year and a longitudinal precinct shapefile is needed for the span of years covered by the election
dataset. Furthermore, we may need to clean the precinct shapes to get suitable topology: to be
usable as building blocks for plans, precincts must tile the state, with every resident located in one
and only one precinct.13

The shapefile allows us to match reported vote totals to geographic units and to record which
pairs of precincts are adjacent, which will be needed to ensure that districts are contiguous. For
each precinct, we have joined data on total population from the 2010 decennial census, adult citizen
population by race and ethnicity from the American Community Survey (ACS) five-year rolling
estimates ending in each election year, and counts of votes received by each candidate for statewide
election in a large set of primary and general elections.

Although our modeling concern is with districted elections for Congress and state legislatures,
our analysis is based primarily on statewide (exogenous) contests. This is because the choices facing
voters in districted elections vary across the state: in any given election year, some districts are
uncontested, some have strong incumbents or other idiosyncrasies. When district boundaries are
moved to create alternative plans, the newly proposed districts will be composed of voters who
faced completely different candidate choices. It is not clear how votes for one candidate would
translate to votes for a different candidate. By contrast, statewide elections allow us to make
apples-to-apples comparisons across different parts of the state, since the same set of candidates
competed everywhere. Ideally, we would include all statewide contests for the last ten years, but
this is not always possible because of data availability and precinct instability. As we will discuss
further below, this protocol is not intended for use with fewer than five general elections, grouped
with the primaries (and, where applicable, primary runoffs) that preceded them.

Because our main concern here is whether minority-preferred candidates are ultimately elected
to office, we link the primary (and primary runoff) for a given office in a given year to the general
election for that same office that same year, and define success by whether the candidate who was
minority-preferred in the primary succeeded at all stages of the electoral process.

We use a simplified set of racial groups: every person who identified as Hispanic/Latino on the
census or ACS is classified as Latino. We use the term Black for non-Hispanic respondents who
selected Black as their single racial category, and we use White similarly. All other respondents
(those non-Hispanic persons selecting two or more races, Asian-American, Native American, and so
on) are grouped together and designated as Other. In a state with only one sizable minority group,

12Shapefiles store data about the position and attributes of a geographic unit, such as a precinct.
13Cleaned and vetted shapefiles that are suitable for longitudinal data are easier to create in some states than others.

For instance, the Louisiana shapefile used in this study required hundreds of person-hours of data preparation from
members of the MGGG Redistricting Lab. It would be extremely difficult to obtain an analogous data product in
Mississippi, for example.
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all other minority groups may be merged into the Other category for purposes of this VRA protocol.
Citizen voting-age population is denoted by CVAP, and we use HCVAP, BCVAP, WCVAP, and
OCVAP to denote Hispanic/Latino, Black, White, and Other CVAP. We focus on Latino and Black
voters as minority groups because our main case study involves congressional redistricting in Texas.
In other states, like California, Hawaii, or Alaska, or in certain local districting projects, we might
specify different racial groups for analysis.

Importantly, we make no prior assumptions about whether the voting behavior of Latino, Black,
White, or Other groups will align. This is a case-by-case empirical question addressed with statis-
tical inference.

4.1.2 Candidates of choice

As explained above, the linchpin of a vote-dilution claim under the VRA is the right to replace
districts where minority-preferred candidates usually lose with districts where they have a realistic
opportunity to win, so long as they “pull, haul, and trade to find common political ground” (Johnson
v. De Grandy, 1994, 1020). To assess whether a district falls into the former category or the latter
requires determining which candidates are preferred by members of each sizable minority group.

Because vote totals are not reported by racial group, we cannot directly determine which can-
didates are minority-preferred. Instead, this effort falls under the umbrella of ecological inference
(EI). Voting preferences are never monolithic, but techniques for measuring racial polarization have
been refined for decades, and they can help us estimate the degree of bloc voting. The techniques in
the ecological-inference family, like all statistical-inference methods in the presence of missing data,
give imperfect and uncertain answers (Elmendorf, Quinn and Abrajano, 2016). It is fundamentally
important to estimate the error that is produced by techniques and keep track of how it compounds
or cancels out in our high-level conclusions. As much as possible, we will opt to make gradated
and not bright-line determinations from the outputs of EI.

Our VRA-conscious ensemble protocol requires identifying the candidate who was preferred by
each sizable minority group in each election, together with confidence measures that these preferred
candidates are correctly identified. To perform the check for minority control of a district, as well
as to identify district-wide candidates of choice for newly proposed districts, we make use of not
only statewide but also precinct-level vote estimates by race for each candidate (with variance
estimates). Users can employ various methods to generate these estimates (e.g., using King’s EI,
Ecological Regression, exit polls, or voter files). Notably, this allows our protocol to immediately
incorporate any future advances in inference techniques.

In the implementation described here, we generate estimates using a version of King’s EI,
specifically the ei.MD.bayes function from eiPack (Lau, Moore and Kellermann, 2020) which is
based on the Bayesian hierarchical Multinomial Dirichlet model for R×C tables proposed in King,
Rosen and Tanner, 1999.14 For each election we run EI at the statewide level, using precinct-level
input tables. The inputs for each precinct are the row and column sums for the R × C table of
vote counts. The row sums correspond to the precinct’s estimated number of adult citizens in each
racial group (HCVAP, BCVAP, WCVAP, and OCVAP). The column sums are the precinct’s vote
totals for each candidate as well as a None count, which is the sum of the four CVAP figures minus
the sum of the recorded vote totals for all candidates, estimating the number of nonvoters. EI
then infers values for the internal cells of these tables, i.e., estimated vote counts by racial group
and candidate. Inclusion of the None column allows the underlying model to estimate differential
turnout by race; without this, EI would rely on the unrealistic assumption that adult citizens from
all demographic groups were equally likely to have cast a ballot.

14Here, R× C stands for the number of rows (or racial groups) R and columns (or candidates) C.
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Each EI run generates a large random sample of estimated precinct vote counts; we can sum
these across the entire state to get statewide estimates. For each racial group, the candidate with
the highest average estimated vote total for a given election is identified as the group’s “candidate
of choice.” For a measure of confidence that Candidate X was the candidate of choice for a racial
group in a given election, we first take repeated draws from the EI distribution and record the
frequency with which X receives the most votes from that group. We then transform this to a
confidence score.15

4.2 Building new plans by recombination

The science of representative sampling has advanced greatly in the past few years as ensemble
methods for redistricting have matured. Using a technique known as Markov chain Monte Carlo
(MCMC), it is now possible to efficiently create an ensemble of thousands or millions, even billions,
of plausible maps. We can even sample while keeping control of the weighting that makes some
kinds of plans appear more often than others. For example, we can be sure that a preference for
more compact plans is designed to depend only on a prescribed score of compactness and on no
hidden factors.16

The engine of our district-generation process is a Markov chain known as recombination, ab-
breviated ReCom, whose central idea of using spanning trees to split districts is fast becoming the
standard in the field (DeFord, Duchin and Solomon, 2021; Carter et al., 2019; McCartan and Imai,
2020). We will apply it to plans built from whole precincts, the smallest geographic units for which
we have accurate, detailed electoral data. Earlier MCMC methods for redistricting reassigned a
single geographic unit (such as a precinct) from District A into adjacent District B at each step,
creating a new plan that agreed with its predecessor on the assignment of every unit except one.
(If Texas, for example, had 9000 precincts, 8999 would stay in their districts at each step.) By
contrast, ReCom typically proposes a much larger change: at each step, two entire (adjacent) dis-
tricts are merged and then re-split in a new way that is completely independent of the division
in the previous plan. This means that a single ReCom step can reassign hundreds of precincts
at a time. (Each of Texas’s 36 congressional districts, for instance, has roughly 9000/36, or 250,
precincts, so each recombination step performs a random division of roughly 500 precincts into two
new districts.) By iterating this transformation hundreds of times per minute, the map soon loses
any resemblance to its starting configuration.

A ReCom step merges a random pair of adjacent districts and splits the region in a new way.
Under the hood, each ReCom step uses a spanning tree, which is a kind of “skeleton” of the double-
district created by the random merger, and then searches for a place to cut that tree to leave
behind two population-balanced, connected pieces. So, by construction, all plans proposed by

15Let p be the frequency in a batch of trials with which X is observed to be the preferred candidate. We logistically
transform this to a confidence score using C(p) = 1/(1 + exp(18− 26p)) to weight the election in the compound score
of district effectiveness (see Table 1 below). The parameters 18 and 26 were chosen so that an election in which the
draws have Candidate X ahead only 50% of the time should receive almost no weight (because it is a toss-up); but if
Candidate X comes out ahead in, say, 85% of trials, the confidence should be nearly 100%. It is certainly possible to
use other parameters, to skip this step and just use C(p) = p as a measure of confidence, or even to forgo confidence
altogether. Without some factor of this kind, however, the resulting score will have more noise due to cases where
the candidate of choice is uncertain. If we do not strongly down-weight the uncertain elections, we risk a situation
in which just rerunning the EI with identical settings could produce a significantly different answer. We discuss this
and other robustness checks in footnote 29.

16To be precise, the recombination algorithm used here approximately targets a known distribution called the
spanning-tree distribution, where the probability of selecting a particular plan is proportional to a certain measure
of compactness. A modified algorithm called reversible recombination exactly targets that steady state. See DeFord,
Duchin and Solomon 2021; Duchin and Tenner 2018; Cannon, Duchin, Randall and Rule 2020.

13



recombination are contiguous and maintain the desired population balance. What is less obvious
is that ReCom’s use of spanning trees also places an automatic priority on districts that have more
internal adjacencies: so compactness, or a preference for plump, regular forms over thin necks or
stringy appendages, is also a structural feature of the algorithm (see Figure 2) and does not have to
be set as a manual choice by the programmer (DeFord, Duchin and Solomon, 2021). In fact, when
the district boundaries of a plan generated by ReCom look ragged to the eye, it is often because
the building-block units themselves (such as precincts) have jagged edges.17

Figure 2: If all contiguous, population-balanced plans were made equally likely, the compact plans
(left) would be enormously outnumbered by bizarrely noncompact ones (right). The ReCom algo-
rithm prefers the compact one, with a relative weight dictated only by its compactness score.

Over thousands or millions of iterations, this simple method can undertake far-reaching explo-
ration of the universe of possible plans subject to population balance, contiguity, and reasonable
compactness. We will call a set of plans collected in a recombination chain an ensemble of plans.

Additional features and constraints can be incorporated into ReCom either with hard thresholds
(i.e., validity checks) or by using probabilistic acceptance. To illustrate this, consider the tradi-
tional districting principle that counties should be kept intact when practicable. We could enforce
a maximum allowable number of county splits by adding an instruction to automatically reject
as invalid any proposed plan that exceeds some level of county-splitting, creating a constrained
ensemble. A different option would be to impose a bias to the probability of acceptance, essentially
flipping a weighted coin each time a proposal is generated that makes it rare but not impossible to
accept plans with a large number of county splits. This would create a biased (or tilted) ensemble
favoring fewer county splits.

When a proposed plan is rejected, a new plan is proposed by merging and re-splitting a freshly
chosen pair of adjacent districts. This continues until some proposed plan passes the necessary
tests to be accepted, at which point it is added to our ensemble. The next step proceeds from
this newly accepted map, and so on until the Markov chain reaches its stopping condition (such
as by collecting a prescribed number of plans). Our ensembles contain every valid plan rather
than sub-sampling, or thinning out by accepting only every 1000th or 10,000th plan as previous
authors have done (Herschlag et al., 2020; Fifield et al., 2020). The long-range statistical proper-
ties are the same whether we use continuous sampling or sub-sampling, and we employ standard
convergence heuristics from the scientific computing literature to provide evidence that our chains
are run long enough for the statistics we collect to approach stationarity.18 For more information

17The reasons spanning-tree partition methods produce compact districts are explored in Duchin and Tenner (2018)
and DeFord, Duchin and Solomon (2021).

18Markov chains that take large steps, like ReCom, require many fewer steps to achieve approximate independence
than methods that iterate very small changes.
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about spanning-tree recombination and for comparisons to other methods, see DeFord, Duchin and
Solomon, 2021; Becker and Solomon, 2020; DeFord and Duchin, 2020; Cannon, Duchin, Randall
and Rule, 2020; McCartan and Imai, 2020; Carter et al., 2019.

Below, we will refer to district-level as well as statewide EI estimates as we build scores of district
effectiveness. The district-level procedure requires some thought because of the computational cost
of any calculation that occurs while the algorithm runs, rather than being performed in advance.
It is not feasible to rerun EI to determine district-level candidate preferences with each newly
proposed plan in a ReCom chain. We need a highly efficient calculation to retrieve both a point
estimate and an estimated confidence level when a new district is formed. To handle this, we
make use of the hierarchical structure of EI. The EI algorithm generates large random samples
for each precinct from the distribution of possibilities produced by the underlying Bayesian model.
This means that we can store outputs for each precinct in the state. Ideally, we would save the
full detailed histogram describing the frequency with which various vote counts were estimated for
each candidate and racial group in that precinct. Because this is too much information to store,
we instead record the point estimate for each group’s support of each candidate in addition to a
simplified coarse histogram of vote counts, compressed down to just nine values, which turns out
to be enough to recover the shape of the detailed histogram with remarkable fidelity, as shown in
Supplement A. During the run of the ReCom Markov chain, we can re-draw samples from these
coarse distributions and aggregate to the district level for each newly generated plan to determine
the confidence that we have correctly identified candidates of choice.

4.3 Building raw scores of district effectiveness

We next lay out three ways to use prior election results in assigning a minority-effectiveness score
to a proposed district: an unweighted score, a score that weights elections based on statewide
voting patterns, and a score that weights elections based on voting patterns restricted to the
proposed district itself. We will denote these scores by sunw, sstate, and sdist, respectively. Although
election-weighting schemes differ across the three effectiveness scores, each score captures the same
underlying idea: the effectiveness of a district for a minority group is keyed to the district’s history
of voting for minority-preferred candidates running for statewide offices. Importantly, because
our districts are built from whole precincts and we have prior election results matched to those
precincts, no statistical inference is required to determine which candidate prevailed in each district.
We simply total up the votes cast in the district for each candidate and note which candidate got
the most support.

First, we need to settle on the meaning of a successful outcome for the voters of a minority
group in a particular election and district. If the candidate of choice from the primary does not
advance to the runoff or general, then the outcome of the general is less informative with respect to
the group’s preferences. Therefore, we group elections by pairing primary and general (or grouping
primary–runoff–general if applicable) as Table 3 illustrates for our Texas case study. A successful
election is one in which the minority-preferred candidate in the primary prevailed in both elections
in the grouping (or all three, if there was a primary runoff).19

19To be precise, suppose the primary candidate of choice is Candidate X and the runoff candidate of choice is
Candidate Y (who might or might not be the same person as Candidate X). Then there are three cases we count as
primary success. Case one: X won the primary (in the district) and there was no runoff. Case two: X received over
50% of the vote in the primary (in the district), whether or not there was a runoff. Case three: X ranked first or
second in the primary (in the district) and Y won the runoff (in the district). An election set that meets one of these
primary-success conditions and in which the minority-preferred nominee wins the general election in the district is
counted as a successful election in the scores below.
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Our weighting scheme is keyed to the probative value of each statewide election in determining
minority effectiveness—its value as evidence. The unweighted score treats each election equally;
no election is considered more probative than any other in determining a district’s effectiveness.
By contrast, the statewide weighted score sstate and the district weighted score sdist treat some
statewide elections as more probative than others and weight them accordingly. These election
weighting factors each fall on a scale from zero to one. Their product is the final weight for an
election. In keeping with case law, we up-weight elections if they have certain features:

• Recent. More recent elections provide stronger evidence of future electoral opportunity.

• Clear candidate of choice. As described above in Section 4.1.2, our ecological-inference
outputs come with estimates of the probability that the minority-preferred candidate in the
primary election has been correctly identified. Translating this to a confidence that EI has
identified the correct candidate gives greater weight to elections in which the minority group
has a clearly preferred candidate.

• Group member preferred. An outcome gives stronger evidence of electoral opportunity
when the minority-preferred candidate is a member of the particular minority group.

Score/Factor Recent
Clear candidate

of choice
Group member

preferred

Unweighted
(sunw)

1 1 1

Weighted/
Statewide

(sstate)



1 Most recent

.841 1 year prev.

.707 2 years

.595 3 years

.500 4 years

.421 5 years, etc.

Confidence from
statewide EI 

1 X belongs

to group,

.5 otherwiseWeighted/
District
(sdist)

Confidence from
district-level EI

Table 1: The weighting factors for the unweighted, statewide, and district-based effectiveness scores
(sunw, sstate, and sdist, respectively). All of these are computed with respect to the primary election
in an election set, because the runoff and general may not contain the most-preferred candidate for
the minority group. Here, Candidate X is the minority group’s candidate of choice. These factors
will be combined into an election-weighting term w for all elections in the dataset.

The weighting factors are summarized in Table 1. We discount elections for each year of age by
a multiplicative factor of 2−1/4 ≈ .841, so that if any one election is four years older than another,
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it weighs half as much. The confidence that we have correctly identified the minority-preferred
candidate is the same confidence score C(p) described above (see footnote 15), using draws at the
state level for sstate and drawing from the district-level coarse histogram for sdist. When gauging
Latino effectiveness, we place twice as much weight on elections in which the Latino-preferred
candidate is Latino; and the analogous statement holds for other minority groups. Of course, these
detailed weights are choices made by the modeler. We will introduce a calibration step for our
effectiveness scores in the next section that makes our outputs more robust to these parameters,
and we tested this by re-running the protocol several times with slightly different choices (see
footnote 29).

These weighting factors are important for the legal interpretation we intend. More recent elec-
tions are up-weighted because the predictive value of election results tends to erode over time,
as older voters pass away, younger citizens reach voting age, immigrants are naturalized, peo-
ple move into or out of the district, and voters change their political preferences and behaviors.
Confidence in correctly identifying candidates of choice is clearly pertinent, because a wrongly iden-
tified candidate of choice undermines all subsequent conclusions we will draw. Elections where the
minority-preferred candidate belongs to the minority group in question are up-weighted because
they are more probative: in the words of the late Judge Richard Arnold, the VRA’s guarantee of
equal opportunity is not met when “[c]andidates favored by [a minority group] can win, but only
if the candidates are white” (Smith v. Clinton, 1988, 1318).

We now have all the ingredients for the raw effectiveness score for a given district and racial
group, multiplying the three factors above to get a weight w = w(E,D) for each election and
district. For instance, if we have 20 elections, then each w will be .05 for the sunw score, no
matter the election. For the statewide score sstate, the elections will not all count equally, so that,
for example, a recent election with an in-group candidate will weigh four times as heavily as a
four-year-old election with only White candidates.

Each effectiveness score is computed similarly:

score of district D = s(D) =
∑
E∈E

w·δ = weighted share of elections won by candidate of choice,

where δ is 1 if the minority-preferred candidate carried the district and 0 otherwise. This expression
applies to all three kinds of effectiveness scores s = sunw, sstate, sdist. For example, suppose there
are two election groupings separated by four years, both have equal confidence weights and feature
group members, and the candidate of choice is successful in one of those two election sets. Then
the statewide and district raw scores of effectiveness would be 1/3 if the success was in the earlier
election and 2/3 if the success was in the later election, while the unweighted score would be 1/2.

The strength of using an approach that centers on electoral effectiveness rather than demo-
graphics is that we do not make evidence-free assumptions about how large a Latino population is
needed to nominate and elect Latino-preferred candidates, or similarly for other minority groups.
Rather, we directly and empirically answer that question, by totaling up votes, district by district.
Our direct, empirical approach is better keyed to actual minority electoral opportunities, and so
also comports better with federal law. The VRA’s plain text does not equate a minority-effective
district with a majority-minority district; rather, it demands an assessment of whether minority
citizens have an equal opportunity to “nominat[e]” and “elect representatives of their choice.” And
our empirical approach also respects the Equal Protection Clause’s prohibition against relying on
racial-percentage targets when drawing districts.
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4.4 Calibrating effectiveness scores

The raw effectiveness scores described above combine election results in three different, reasonable
ways. Each score ranges from zero (never electing minority-preferred candidates) to one (always
electing them). We next convert these to calibrated scores that we will use when deciding whether
to accept plans into the ensemble.

At this stage, we take a group-control factor into account, combining it with the raw effectiveness
score because it is relevant to predicting future performance and to ensuring an emphasis on electoral
success for larger numbers of minority voters. It is clear from redistricting case law that majority-
minority districts are not required for VRA compliance, and indeed that setting out to draw districts
with a demographic target is sometimes prohibited. At the same time, a district that has only 5%
Black CVAP would not be reasonably viewed as an effective opportunity district for Black voters,
on par with a district with more significant Black population. We have chosen to address this issue
with a factor based on the minority group’s share of district CVAP.20 Group control of the district is
relevant for two reasons. First, Section 2 of the VRA focuses on a minority group’s ability to play a
controlling or “decisive ... role in the electoral process” and not merely one of “influence” (LULAC
v. Perry, 2006, 446 (plurality opinion) (citation and quotation marks omitted)). Second, because
Section 2 protects the voting rights of a minority group’s individual members, the effectiveness of
a district should in part depend on the number of those members represented by their candidate
of choice.

The goal of the calibration step is to bolster the probabilistic interpretation of the scores, so
that, for example, a district with s = .5 can be described as having a 50/50 chance to perform for
the minority group under consideration. To lend justification to this probabilistic interpretation,
we apply a standard logistic regression to normalize the raw scores based on observed success data
from actual enacted districts (specifically, all congressional, state Senate, and state House elections
in the last decade).21

By design, the calibration step helps ensure that although the elections that are used in con-
structing the raw effectiveness scores are statewide contests, they still reflect election outcomes in
local (districted) elections. We think of the logistic transformation as producing a score that best
captures the observed performance of congressional, state Senate, and state House districts in the
last decade. Each input (raw) score falls between zero and one; after applying the logit function we
obtain an output (calibrated) effectiveness score that still falls between zero and one, but is now
easier to interpret. We will reuse the same notation sunw, sstate, sdist for the outputs, taking care to
refer to the scores as raw or calibrated when there is a possibility of confusion.

4.5 Counting effective districts

To assess whether a proposed plan complies with the VRA, we will need to count effective districts,
and not just report scores. We elect to define a Latino-effective (or Black-effective) district as one

20Namely, our group-control factor for a district is c = min(2k, 1) where k is the group’s share of CVAP. Alter-
natively, the modeler could set an election-specific group-control factor in several reasonable ways: as the minority
group’s estimated share of votes for the candidate of choice; the group’s estimated share of the district’s Democratic
primary electorate; or the estimated group votes for the minority-preferred candidate divided by the total votes for
all candidates, for example.

21We tune logit curves f(x) = 1/(1 + exp (−(ax+ b))) so that f(0) ≥ 0, f(1) ≤ 1, and f(c·si) ≈ δi where si are
the raw effectiveness scores of enacted districts, c is group control, and δi ∈ {0, 1} are the ground-truth outcomes
(with 1 for success) for the corresponding candidates of choice. The aim is to input a raw effectiveness score s
and a group-control factor c and update s to a probability of effectiveness f(cs). For details and examples, see
Supplement B.
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whose calibrated effectiveness score estimates at least a certain threshold chance of both nominating
and electing a Latino-preferred (or Black-preferred) candidate.

This threshold is a parameter to be set by the modeler, and it may involve considerable discre-
tion. One consideration may be the mapmaker’s level of risk aversion, since setting a lower threshold
may result in a higher number of qualifying districts that can be simultaneously drawn, but some
or all of those districts will be less certain to nominate and elect minority-preferred candidates. A
second consideration may be how particular districts in the current enacted map have been charac-
terized by judges and victorious litigants in prior redistricting litigation, or how they have actually
performed in prior elections. A third consideration may be the number of statewide elections in
the dataset: we may choose a higher effectiveness threshold if we have a smaller set of available
elections, to account for the possibility that the signal from any single election is misleading.

In our Texas case study below, we have adopted the threshold condition s > .6—that is, to be
deemed an effective district, we require a greater than 60% estimated chance of nominating and
electing a minority-preferred candidate. We chose this figure in view of the above considerations,
and because we found that districts with s > .6 in any one of our three scores were quite likely to
have s > .5 in the other two versions, increasing our confidence that the districts selected in this
way are likely to perform more often than not.22

4.6 Assembling the ingredients to build a VRA-conscious ensemble

Running on a standard laptop, ReCom generates new plans at a pace of hundreds of plans per
minute in the Python implementation in (MGGG Redistricting Lab, 2018b), and runs about 40
times faster in the Julia implementation in (MGGG Redistricting Lab, 2020b), depending on the
size of the districting problem and the tightness of the constraints.23 The VRA-conscious protocol
implemented here in Python (MGGG Redistricting Lab, 2020a) reassesses district effectiveness
scores at each step, which slows the process somewhat, so that our runs take about 35 steps per
minute for the unweighted and statewide scores and about 15 steps per minute for the district-level
score on a state the size of Texas. For a smaller state like Louisiana, the speed more than doubles.

The last question to specify our protocol is how to set the numbers of effective districts that
a proposed map must contain for each minority group, to be presumptively valid under the VRA
and the Constitution, and thus to be included in our ensemble. Our first guide in answering this
question is the state’s most recent districting plan, which may have been in effect for up to a
decade and either has gone unchallenged in court or has withstood legal challenges, including VRA
claims.24 The second guide, discussed above, is rough proportionality, within the meaning of the
Supreme Court’s important VRA decisions in Gingles and De Grandy: plans are frequently judged
by whether the share of effective districts is similar to each group’s share of statewide CVAP.

Considering these guides, we will reject proposed plans that have fewer minority-effective dis-
tricts than the benchmark plan; in other words, we will treat this threshold level of effectiveness

22Case law does not dictate how certain we must be of district effectiveness. When analyzing Texas districts, we
found that rejection sampling for effectiveness ran as efficiently at the s > .7 threshold as it did at s > .6, suggesting
that a modeler could exercise considerable discretion in setting the effectiveness threshold.

23To be more precise, we conducted non-VRA trial runs on Texas, Virginia, and Pennsylvania congressional plans
built out of precincts using identical machines (Intel(R) Xeon(R) CPU E5-2660 v2 @ 2.20GHz [Ivy Bridge, late
2013]), allowing districts to deviate from ideal population by only 1%. Over runs of various lengths and with various
seeds, the Python implementation generated 3 to 8 valid plans per second, while the Julia implementation generated
120 to 320 valid plans per second.

24Numbers derived from this benchmark may need to be adjusted if the state’s political geography or demographics
or the number of districts in a state’s plan has changed (for example, due to reapportionment of congressional seats).
Our protocol can be run using a different map as a benchmark if there is reason to believe the current plan violates
the VRA or the Constitution.

19



as a validity check in the district-generation algorithm. For instance, if we are considering a single
minority group and the benchmark plan has three districts that are effective for that group, then
each plan included in the ensemble must have at least three effective districts as well. On the
other hand, we would reject a proposed plan if it had so many effective districts for one minority
group that it would relegate another sizable demographic group to substantially sub-proportional
representation.

Surveying the protocol described in this section, the key to our approach is its close reliance
on detailed, precinct-level election results from both primary and general elections. We do not
assume that some a priori demographic threshold will cleave districts that provide minority voters
with realistic electoral opportunities from districts that will not. The approach is deeply empirical,
focusing on whether a specific district, regardless of its precise demographic percentages, has a
recent history of consistently supporting minority-preferred candidates in both primary and general
elections. To quote Justice Kagan, our protocol is “evidence-based, data-based, statistics-based.
Knowledge-based, one might say” (Rucho v. Common Cause, 2019, 2519 (Kagan, J., dissenting)).

5 Case study: Congressional districting in Texas

We applied the VRA-conscious protocol described in Section 4 of this Article to build 36-district
Texas congressional plans.

5.1 Data

We downloaded the 2018 Texas precinct shapefile and statewide election returns from the Texas
Legislative Council’s website (Texas Legislative Council, 2020). Table 2 shows summaries of the
demographic data obtained from the 2010 decennial census and the American Community Survey
(ACS) rolling average for the five-year span ending in 2018. (We used CVAP from ACS five-year
spans ending 2016, 2014, and 2012 when assessing elections from those years.) While election
data could be directly joined to the shapefile, we used the maup package to disaggregate ACS
data from block groups (the smallest unit for which CVAP is available) down to census blocks
and then aggregated the block-level data up to precincts (MGGG Redistricting Lab, 2018c). Total
population and voting-age population (VAP) were collected from the 2010 decennial census; and
because these data are available at the block level, they required no proration and could be directly
aggregated up to the precinct level.

Racial group Share of total population Share of VAP Share of CVAP

Latino 37.62% 33.61% 29.36%

Black 11.48% 11.36% 13.08%

White 45.33% 49.64% 52.28%

Other 5.57% 5.39% 5.28%

Total count 25,145,561 18,279,737 17,858,066

Table 2: Latino, Black, White, and Other shares of Texas residents by total population, voting-age
population (VAP), and citizen voting-age population (CVAP). Total population and VAP data
are taken from the 2010 decennial census, while CVAP data comes from the ACS five-year rolling
average ending in 2018.

We then analyzed 21 statewide Texas elections conducted from 2012 to 2018, which are recorded
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in Table 3. These were all the statewide elections conducted since the last round of redistricting
almost a decade ago—for federal and state offices, both executive and legislative, omitting only
state judicial elections.

2012 2014 2016 2018

President P/G P/G
U.S. Senator P/R/G P/R/G P/G

Governor P/G P/R/G
Lieutenant Governor G P/G

Attorney General G G
Comptroller G P/G

Land Commissioner G P/G
Ag. Commissioner P/R/G G
RR Commissioner G P/G P/R/G P/G

Table 3: The 14 election sets in our Texas data (5 of which included a primary runoff), and the 7
general elections that we omitted because the Democratic nominee lacked any primary opposition.
P means Democratic primary; R means Democratic primary runoff; and G means general election.

Ultimately, we eliminated from consideration 7 of those 21 elections (struck through in the table)
because there was no contest in the Democratic primary, which in Texas is a critically important
stage of the electoral process for determining which candidates are minority-preferred. We were left
with 14 contests: nine primary/general sets and five primary/runoff/general sets, where the runoff
was conducted because no candidate garnered an outright majority of the vote in the Democratic
primary.

We also compiled district-level data for the 36 U.S. House, 31 Texas Senate, and 150 Texas
House of Representatives seats, including the race and party of the winning candidates in all
elections from 2012 to 2018, as well as demographic data for the districts, for use in the score
calibration described in §4.4 and carried out in §5.3 (Klarner, 2019; History, Art & Archives, U.S.
House of Representatives, Office of the Historian, 2020a,b).

5.2 Racial polarization and candidates of choice

The statewide results for general elections in Texas show a stark pattern of racial polarization.
Across 14 separate contests in four election cycles, all three minority groups consistently voted
Democratic, and White voters consistently voted Republican, as shown in Figure 3. In Texas, it
is commonplace for more than three-quarters of White voters to vote Republican and more than
three-quarters of minority voters to vote Democratic in the same election. Furthermore, this basic
pattern appears to hold, to a greater or lesser degree, in every region of the state.

0% 50% 100%White Other Black

Latino

Figure 3: The highest and lowest EI point estimates for each racial group’s support of the 14
Democratic nominees in statewide general elections: White (15–27%), Other (69–78%), Latino
(73–82%), and Black (84–89%).

It therefore is not surprising that the great majority of Texas’s non-White officeholders are
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Democrats. From 2012 through 2018, there were only two exceptions for Representatives in
Congress (out of 15 Latino or Black members) and eight exceptions for Texas state Senators or
Representatives (out of 83 Latino or Black state legislators).

No Democratic candidate has won a statewide general election in Texas since 1994. So none of
the Latino- or Black-preferred candidates in our 14 recent contests prevailed statewide. But the
vote patterns show that each of them carried a significant number of districts in general elections
under the current Texas congressional plan and under every plan in our ensembles.

Just as the Latino-preferred and Black-preferred candidates in all 14 statewide elections were
Democrats (see Figure 3),the same has held true in congressional elections. The success of Latino-
and Black-preferred congressional candidates in Texas therefore has hinged on their ability to win
Democratic primaries (and, where applicable, primary runoffs) and then win general elections. A
large majority of White voters in Texas primary elections participate in the Republican primary,
while most people of color who participate in Texas primaries vote in the Democratic primary. So,
for VRA purposes, we can currently forgo analysis of voting patterns in Republican primaries or
Republican primary runoffs in Texas.

In Democratic primaries and primary runoffs, we found a high degree of cohesion across demo-
graphic groups. Because all 14 contests were for single-member offices (like Governor), we focused
on the one candidate in each Democratic primary who was preferred by each of the four demographic
groups. In 9 of the 14 Democratic primaries and in 4 of the 5 Democratic primary runoffs, the three
minority groups (Latino, Black, Other) preferred the same candidate, as shown in Supplemental
Table 7.

Given this cohesion in Democratic primaries and runoffs and especially in general elections, it
might well be possible to treat Latino and Black voters, or Latino/Black/Other, as a single coalition
group for VRA purposes (Campos v. City of Baytown, 1988, 1244–45). Our main analysis will treat
Latino and Black voters as separate minority groups, but the same method could be adapted (and
indeed simplified) for coalitional analysis.

As a final and important point relating to our EI setup, we note that we do not need to run EI
on small geographies to detect regional difference.

For example, in the 2018 gubernatorial runoff, former Dallas County Sheriff Lupe Valdez and
Houston’s Andrew White are identified as the statewide candidates of choice for Latino voters and
Black voters, respectively. But in the Dallas-Fort Worth Metroplex, Valdez carried both minority
groups. As Figure 4 shows, that effect is visible in our EI outputs from a statewide run, because
the hierarchical model works by computing distributions of support on each precinct. This lets us
identify Valdez as the Black-preferred candidate in the Dallas-Fort Worth Metroplex while White
is seen to have carried the Black vote in the Houston area.

5.3 Effectiveness scores and inclusion criteria

In Texas, we have the benefit of seeing results from 33 separate contests (14 primaries, 5 primary
runoffs, and 14 generals), so that 14 potential successes make up the raw effectiveness score.25

According to recent CVAP data (shown in Table 2 above), rough proportionality would require
10.6 districts and 4.7 districts that are effective for Latino voters and Black voters, respectively,
given Texas’s current congressional apportionment of 36 seats. We will round these to 11 and 5

25To perform the logit calibration step described in §4.4, we used all congressional and state-legislative winners
from 2012 to 2018. This includes 145 congressional contests (36 districts), 600 state House contests (150 districts),
and 77 state Senate contests (31 districts), for a total of 822 data points. This includes one special election for
Congress.

22



Figure 4: The distribution of EI-estimated Black support for former Dallas County Sheriff Lupe
Valdez in the 2018 gubernatorial runoff. The Dallas-Fort Worth area, in northeastern Texas, is
mostly orange in this map, while the Houston area, in southeastern Texas, is mostly purple. (The
map’s gray areas contain few, if any, Black voters.) This map shows that even statewide EI can
find significant regional variation in a group’s voter preferences.

districts, respectively. If Latino, Black, and Other voters were treated as a coalition, that coalition’s
proportional share would exceed 17 districts.

Using any of our three calibrated scores, Texas currently has 11 effective districts for minority
groups at the 60% threshold: seven Latino-effective districts, three Black-effective districts, and
one district that is effective for both groups (see Table 4). If our protocol focused solely on the most
recent elections (e.g., 2018), however, two additional districts—District 7, currently represented by
Lizzie Fletcher, a White Democrat, and District 32, currently represented by Colin Allred, a Black
Democrat—might meet the effectiveness thresholds for Latino voters or Black voters under some
or all of our three calibrated scores. But in the early years of the decade (e.g., 2012 and 2014) both
districts were still reliably voting for Republicans in statewide and congressional elections.

Since the current map has withstood judicial scrutiny under both the VRA and the Equal Pro-
tection Clause (Abbott v. Perez, 2018, 2324–34), we require plans in our VRA-conscious ensemble
to meet or exceed that map’s level of effectiveness: so we require at least eight Latino-effective
districts, at least four Black-effective districts, and a total of at least 11 districts that are effec-
tive for at least one of the groups. So, for example, a plan whose (Latino, Black, Both, Neither)
effective-district count was (4, 0, 4, 28) would not qualify for the ensemble because it falls short of 11
minority-effective districts. In effect, this approach allows plans whose effective-district counts are
(7, 3, 1, 25) or (8, 4, 0, 24), as well as plans that dominate one of those outcomes from the minority
perspective by shifting districts from Neither to any of the other categories.26

26Although a map with fewer than 18 Neither districts could potentially give rise to a Section 2 claim by White
plaintiffs and thus merit exclusion from an ensemble, our chain runs did not generate any such plan.
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Current Enacted Plan

CD Location
HCVAP Latino Effective BCVAP Black Effective WCVAP

Representative Race
% sunw sstate sdist % sunw sstate sdist %

9 Houston 24.7 44 38 43 46.7 96 96 94 16.1 Al Green Black

15 South
Texas

73.7 95 97 97 2.5 8 9 7 22.1 Vicente Gonzalez Latino

16 El Paso 76.0 99 99 97 4.2 11 12 10 17.5 Veronica Escobar Latino

18 Houston 26.9 51 44 51 44.9 95 95 95 22.8 Sheila Jackson Lee Black

20 San An-
tonio

65.0 97 97 97 5.6 12 12 12 25.8 Joaquin Castro Latino

28 South
Texas

69.2 86 93 96 5.5 10 12 8 23.2 Henry Cuellar Latino

29 Houston 64.0 98 97 97 16.2 49 48 46 16.7 Sylvia R. Garcia Latino

30 DFW 22.7 44 38 39 52.1 99+ 99+ 99 21.7 Eddie Bernice Johnson Black

33 DFW 46.5 98 98 95 24.1 78 75 64 25.6 Marc A. Veasey Black

34 South
Texas

78.5 98 99 93 1.6 8 9 6 19.1 Filemon B. Vela Latino

35
Austin/
San
Antonio

52.2 97 97 97 10.3 22 20 24 34.4 Lloyd Doggett White

Table 4: The population shares and calibrated effectiveness scores for the 11 districts in the current
Texas congressional map that are labeled effective for Latino and/or Black voters. Scores over 60%
have darker shading, and scores in the 50–60% range have lighter shading. Mark Veasey’s District
33 is the only one that registers as effective for both Latino and Black voters, though Sheila Jackson
Lee’s District 18 and Sylvia Garcia’s District 29 are close. All 11 Representatives are Democrats.

5.4 Basic results

In this section we first present evidence to support the claim that our chains of districting plans have
produced VRA-conscious ensembles whose statistics have stabilized after 100,000 steps. We then
look at how the statistics from these ensembles compare to an ensemble built with no consideration
of race and to an ensemble generated with demographic thresholds as a potential stand-in for VRA
compliance. Put differently, we compare ensembles generated by our VRA-conscious protocol,
which uses both racial and electoral data, with an ensemble built with racial but not electoral data
and an ensemble built with neither racial nor electoral data.

We built five ReCom ensembles, by running each of the following kinds of chain until 100,000
maps are accepted.

(non-VRA) No VRA consideration. Only population equality is an explicit validity check, since
contiguity is required and compactness is weighted into ReCom ensembles by construction, so
the algorithm does not have to be manipulated to produce reasonably compact districts.

(unw) Constrained by sunw effectiveness. Ensemble inclusion additionally requires at least eight
districts over 60% Latino-effective, at least four districts over 60% Black-effective, and at
least 11 total districts effective for one or both groups, using unweighted effectiveness scores.

(state) Constrained by sstate effectiveness. (Same as above, but using statewide weighted scores.)

(dist) Constrained by sdist effectiveness. (Same as above, but using district weighted scores.)
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(CVAP) Constrained by CVAP shares. A plan must have at least eight districts over 45% HCVAP
and at least four districts over 25% BCVAP to pass the validity check.27

5.4.1 Convergence heuristics and robustness checks

Neither ReCom nor any other MCMC method will work properly if it is not allowed to run long
enough, or if designed in a way that thwarts convergence. In this Article we have used ensembles
built by including every plan that passes the validity checks and continuing until 500,000 maps are
collected. We used two kinds of evidence to arrive at the conclusion that 500,000 plans is probably
sufficient: first, we have confirmed that chains of that length have aggregate statistical properties
that are approximately independent of their starting points, or “seeds,” even when the seeds are
quite different. This test is sometimes called the multistart heuristic. Second, for selected instances
we have confirmed that an ensemble ten times as large has similar aggregate statistics. Passing
these tests is not a rigorous proof of approximately representative sampling, but these are standard
convergence heuristics used across applied statistics. If any ensemble method fails these tests, we
can be sure that either the setup violates the conditions for a unique steady state, or we have not
run the chain long enough to approach it.

For the multistart heuristic to have high value, we should choose plans that are initially very
different and check to see that the ensembles converge to find the same summary statistics nev-
ertheless. The first seed plan used for the multistart test for this Texas case study is the enacted
congressional plan that is currently in effect, which came out of the court proceedings challeng-
ing the early-decade plan of the Republican legislature. To find two other seeds with exaggerated
differences from the enacted plan, we turned to the Atlas of Redistricting project conducted by
the politics team at FiveThirtyEight (FiveThirtyEight, 2018). Seed 2 is their Texas plan drawn
to favor Democrats, which is visibly quite different from the enacted plan and of course has very
different partisan properties as well. Seed 3 is based on the plan FiveThirtyEight drew with an eye
to compactness scores and county integrity.28

For the ensemble using the statewide effectiveness score, Figure 5 shows that a simple partisan
statistic—the Clinton share of the major-party presidential vote from November 2016 across the
36 districts—gives roughly the same answers after 100,000 steps, whether the chain commences
with the enacted plan or with either of the two other seed plans. Similar charts for sunw and sdist

are found in Supplemental Figure 17. These are boxplots (or “box-and-whiskers plots”) where for
each plan the districts have been sorted from 1 (the district with the lowest Clinton share) to 36
(highest Clinton share). The boxes show the values at the 25th to 75th percentiles, with the median
marked, and the whiskers are set at the 1st and 99th percentiles. Colored circles show the initial
values for the enacted congressional plan (red) and the two additional seed plans (blue and green).
The aggregate data collected from the three differently initialized runs is broadly consonant: across
the districts, the three ensembles have medians, quartiles, and overall ranges within one or two
percentage points of each other, even when the seeds began over 15 points apart.

We can also compare spatialized statistics such as the one shown in Figure 7, a record of the
number of times that each precinct appeared in a district with sstate > .6. Just 1000 steps from the
starting point, the heatmaps are visibly different, showing that the chain has not run long enough

27To build a demographic-target ensemble, we searched for maps with at least eight majority-Latino districts and
at least four majority-Black districts by CVAP. Initial attempts did not produce any such maps. We then lowered
the thresholds to 45% for Latino CVAP and 25% for Black CVAP. While those thresholds are somewhat arbitrary,
they roughly track Table 4, as well as the results of Section 6 shown in Figure 9.

28The FiveThirtyEight compact plan did not initially meet our VRA effectiveness requirements, so we used a
heuristic-optimization run as in Supplement H to get it past the thresholds. Both FiveThirtyEight plans had to be
transferred onto our precinct units with the maup package (MGGG Redistricting Lab, 2018c).
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for this statistic to converge. Much nearer visual correspondence is achieved after 10,000 steps, and
the heatmaps are nearly indistinguishable after 100,000 steps.

Beyond the multistart trials, we also checked the same statistics (Clinton vote distribution and
cut-edges score) after 1 million steps. We found minimal difference in partisan or district-shape
metrics when comparing the initial 100,000 steps, a sub-sampled 100,000-plan ensemble containing
every tenth map from the set of 1 million, or the full million-plan ensemble. This raises our
confidence both that the size of the sample is adequate to this level of statistical detail and that a
run length in the hundreds of thousands is sufficient for convergence. Finally, we conducted slightly
altered runs to confirm whether the general findings are robust to reasonable perturbations in the
methodology laid out in §4.3, §4.4, and §4.5.29
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Figure 5: In this multistart heuristic convergence test, the VRA-conscious chain for the statewide
weighted effectiveness score sstate is run for 500,000 steps from three very different starting points.
The colored dots show the Clinton share of the major-party vote from the 2016 presidential general
election, district by district, in the three seed plans described in the text (with the districts sorted
from lowest Clinton share to highest). The boxes and whiskers show Clinton share by district for
each of the three ensembles—they have converged to within one or two percentage points in each
district, even though the seed plans sometimes differ by 15 points or more.

5.4.2 Comparing ensembles

In this section we compare the five ensembles defined in §5.4 to each other, considering whether
those created using our VRA-conscious protocol differ significantly from those created without

29We conducted the following tests: using estimated share of candidate support rather than CVAP share of the
district as the group-control factor c; replacing the confidence term for correctly identifying candidates of choice C(p)
with the simpler term p; and dropping both the group-control factor and the calibration entirely. For the alternative
group-control measure, the changes to scores on Texas congressional plans were minor for both the enacted plan and
generated plans. Changes also were typically small with the simplified confidence factor, but the scores became more
unstable because outcomes with high EI-based uncertainty had more weight relative to clear outcomes, producing
an illusion of greater electoral success on some reruns of EI. The logit calibration was valuable largely to correct for
the reduction of scores by group control; we find that if we drop both of them, districts with significant shares of
both Latino and Black voters are rated higher for both groups than recent electoral history warrants. Finally, we
confirmed that the rate of ensemble generation is similar whether the effectiveness threshold is set at 60%, 70%, or
even 75%. Taken together, these robustness runs increase our confidence that each of these parameters that requires
user choice is indeed doing work in constructing a stable score that comports with electoral history, but that some of
the details could be altered without breaking the protocol.
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Figure 6: Comparing the three kinds of VRA-conscious ensembles, constrained by the
sdist, sunw, sstate scores, respectively, to the alternatives described in the text. Here, the Clinton
share is plotted across 500,000 steps and displayed for the 18 most Democratic districts. There
is a small but discernible difference that separates the partisan statistics of the VRA-conscious
ensembles from those of the control ensembles, which are interestingly similar.

electoral data or without both electoral and racial data. The answer is a definitive Yes. We
have already seen that the three effectiveness scores are similar to each other for the enacted plan’s
minority-effective districts (Table 4). Using summary statistics, we can confirm that the constrained
ensembles using the three scores are similar to each other as well. But the three VRA-conscious
ensembles do not resemble either the non-VRA ensemble (which uses neither electoral nor racial
data) or the CVAP-shares ensemble (which uses racial, but not electoral, data as a purported
stand-in for VRA compliance).

The upshot of rejecting plans with not enough effective districts is seen in Figure 8 with respect
to the sstate score: no plan in the ensemble has fewer than eight Latino-effective or fewer than
four Black-effective districts. This number of effective districts rarely happens by chance without a
VRA-conscious method. Interestingly, enforcing the demographic threshold condition (bottom row)
makes it somewhat more common to get at least four Black-effective districts but does not make an
appreciable difference in the likelihood of creating an eighth Latino-effective district. (Supplemental
Section F contains analogous plots for the sdist and sunw scores.)

Table 5 is another view of the comparison. A significant share of the plans in all the VRA-
conscious ensembles pass the demographic test set forth above, but relatively few plans in the
non-VRA and the CVAP-shares ensembles pass our effectiveness tests.30 This suggests that Texas
ensembles built without rich electoral data—or by imposing a racial threshold—are unlikely to
reflect VRA compliance and might well contain far too many maps that violate federal law. And
this problem likely cannot be cured simply by changing the threshold levels for the CVAP-shares
ensemble: if the CVAP thresholds are raised, it will become harder to find plans with enough
qualifying districts, and many effective districts will be missed.

Comparing the three score-based ensembles against each other shows some differences but also
substantial alignment in the determinations of validity. We should not be surprised that scores that

30That only about half the maps in the three VRA-conscious ensembles satisfy the demographic criteria implies
that it is not uncommon in Texas for Latino-effective districts to have less than 45% HCVAP or for Black-effective
districts to have less than 25% BCVAP. That fact in turn suggests that, at least in some parts of the state, there is
significant coalitional voting between different minority groups.
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(a) sstate run from enacted plan
after 1000 steps

(b) sstate run from Seed 2 after
1000 steps

(c) sstate run from Seed 3 after
1000 steps

(d) sstate run from enacted plan
after 10,000 steps

(e) sstate run from Seed 2 after
10,000 steps

(f) sstate run from Seed 3 after
10,000 steps

(g) sstate run from enacted plan
after 100,000 steps

(h) sstate run from Seed 2 after
100,000 steps

(i) sstate run from Seed 3 after
100,000 steps

Figure 7: The color of each precinct shows how many times it had appeared in a Latino-effective
district after 1000, 10,000 and 100,000 steps. These VRA-conscious ensembles are drawn with
respect to the sstate score from the same three seed maps described in the text. There are initially
significant differences across the three seeds (top row), but the plots converge over the course of
the run (bottom row).
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Figure 8: The distribution of Latino- and Black-effective districts in a VRA-conscious en-
semble (purple), compared to the non-VRA alternative (top, in green) and the CVAP-shares,
demographics-based alternative (bottom, in orange). All are shown with respect to the sstate score.
Note the very modest improvement in effectiveness for the CVAP-shares ensemble compared to the
non-VRA ensemble.

typically track each other within a few percentage points can fall on the other side of a bright-line
threshold: if sunw is just over .6, it can certainly happen that sdist is just below that level. But most
districts for which one score is over .6 have the other scores over .5, making them more likely than
not to be effective for the group in question. This standard is met by more than three-quarters
of the sstate and sdist ensembles. (Again, this is part of the justification to set the effectiveness
threshold for ensemble inclusion at a level buffered safely above 50%.)

Considering all the evidence so far, one might ask whether any of the three calibrated effec-
tiveness scores is to be preferred to the other two. Our determination is that all three scores can
be useful. The unweighted score has the weakest claim of the three, because on its face it omits
factors that are legally and factually relevant. As for the other two scores, we think it can be
valuable to consider both. The district-weighted score has more regional discernment and a more
sophisticated incorporation of EI outputs; the statewide-weighted score has a simpler explanation
and still takes uncertainty into account. While results for different scores are not identical, the
modeling methodology is robust across three reasonable ways of weighting elections to measure
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Unconstrained Constrained Constrained
(non-VRA) (sunw) (sstate) (sdist) (CVAP)

Satisfies (sunw) 15% (100%) 88% 81% 20%
effectiveness (sstate) 20% 98% (100%) 94% 26%

criteria (sdist) 16% 72% 78% (100%) 22%

Satisfies
demographic 30% 39% 46% 51% (100%)

criteria

Table 5: The share of maps in the five ensembles (columns) satisfying various criteria (rows). For
the effectiveness criteria, maps must have at least eight Latino-effective districts (effectiveness over
50% for the indicated score), at least four Black-effective districts, and at least 11 distinct districts
that are effective (for one or both groups) overall. Note that each VRA-conscious variant is built to
satisfy effectiveness in a chosen score at the 60% level, making it likely to pass at least 11 district
effectiveness tests for the other scores at the 50% level, since the scores are similar but not identical.
The demographic test in the bottom row requires a map to have at least eight districts over 45%
HCVAP and at least four districts over 25% BCVAP.

district effectiveness.

6 Learning patterns in district effectiveness

We have just seen that Texas congressional ensembles using demographic data but no electoral
data do not resemble ensembles generated by our VRA-conscious, heavily data-driven protocol.
But what about a method that uses both demographics and electoral data but in a limited way,
needing only a smaller and simpler dataset? Often, scores that seem to be complicated by taking
many things into account can be closely replicated using simpler inputs. In our setting, we would
like to see whether our seemingly sophisticated handling of dozens of election contests could be well
approximated by pared-down district metrics. To examine this question, we now model the nonlin-
ear relationship between effectiveness scores and lower-dimensional combinations of demographic
and partisan features.

In statistics and machine learning, numerous techniques have been developed to recognize pat-
terns in data. Classifier models use training data to “learn” discrete labels (like yes/no effective-
ness), while regression models “learn” continuous-valued assignments (like effectiveness scores), on
the basis of features in the data. For our examples, we are choosing to classify potential Texas
congressional districts on the basis of two kinds of features:

• Demographics, using Latino and Black CVAP shares; and

• Partisan lean, obtained by averaging the Democratic shares of the 2016 and 2012 major-party
presidential vote, with the more recent general election weighted twice as heavily as the older
one.

We begin with a (non-VRA) ensemble of 500,000 plans, then extract the districts from each
to make a large dataset, containing 997,163 districts after de-duplication. For each district, we
compute its statewide weighted effectiveness score sstate. We randomly separate these districts into
training data (80%) and data points held back for testing and validation (20%).
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Figure 9: The top row refers to effectiveness for Latino voters and to Latino CVAP; the bottom
row to corresponding statistics for Black voters. Two-dimensional scatterplots (left column) show
a collection of districts drawn from a non-VRA ensemble, arranged by Latino or Black CVAP share
on the x axis and partisan lean on the y axis, then colored by their sstate score for Latino- or
Black-effectiveness, respectively. The k-nearest-neighbors (KNN) method is “trained” on that data
to infer approximate scores for all possible positions in the square (shown with the training data
in the center figures and without it at right). The hatched areas in the center and right-hand plots
contain no labeled data points, so the KNN estimates are less meaningful in those areas.

We attempted several kinds of models. A k-nearest neighbors (KNN) model assigns a value to
each point based on the k points in the training data that are closest to its location. This can be
thought of as a predicted effectiveness score for districts that may be proposed in the future. The
choice of k is made by a validation step that attempts many different values and chooses the one
that provides the highest accuracy.31 For the regression, the learned value assigned to a point is
the average value of its k nearest neighbors, while the yes/no classification is made by selecting the
majority label among those neighbors.

The outcomes of two-dimensional KNN regression are shown in Figure 9. They show a compli-
cated district-level relationship between effectiveness (color), Latino or Black CVAP shares (x axis),
and partisan lean (y axis). If the effectiveness of districts could be captured with CVAP shares
alone, we would see a vertical line dividing the effective (blue) from the ineffective (red) zones. If
overall partisanship were a good predictor on its own, we might see a horizontal dividing line; this
is not the case, but we note that partisanship alone is more predictive for Latino effectiveness. If

31To be precise, we use m-fold cross-validation with m = 10, then choose the k for KNN with the best average r2

and mean squared error (MSE) over those ten-fold trials. Using those values of k, the final accuracy estimates use
the full set of training data and are then corroborated against the withheld testing data.
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effectiveness could be expressed in a simple linear relationship between partisan lean and CVAP,
we would see a straight line of some slope separating the blue and red regions. Instead, we see a
more complicated frontier with a large zone of ambiguity, especially in Latino effectiveness.32

Figure 10: KNN regression for a three-dimensional scatterplot of district effectiveness.

Because Texas has two sizable minority groups, and Latino and Black voters often have over-
lapping electoral preferences, we might hope to do better by taking both groups’ CVAP shares
into account simultaneously. To this end, Figure 10 shows the same kind of regressions in three
dimensions: Latino CVAP, Black CVAP, and the same measure of partisan lean. These plots still
reveal complex, nonlinear frontiers and significant zones of ambiguity.

Further pattern-recognition results using various models for regression and classification are
found in Supplement G. Together, these methods indicate that scores built from our involved
electoral methodology do not easily reduce to combinations of CVAP demographics and general-
election partisan lean. This leads us to conclude that electoral complexity, perhaps especially the
dynamics of actual primary elections, is playing an ineliminable role in our determination of district
effectiveness.

32Grofman, Handley, and Lublin (2001) studied what amounts to effectiveness classification in a similar feature
space nearly 20 years ago, positing an “elbow” or V-shaped frontier of effectiveness. For a comparison of our
classification results with their framework, see Supplement G.
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7 Closing the representation gap

Finally, we return to where this Article began: the underrepresentation of communities of color
at both the federal and state level. The algorithmic techniques described in this Article can be
readily reconfigured to point the way to maps that are likely to promote significant gains in minority
representation.

7.1 Searching for higher effectiveness

Recall first that our VRA-conscious ensembles are made by imposing yes/no validity constraints
rather than a probabilistic tilt or bias: the proposal of new plans is made without regard to race,
and the validity criteria are given by a threshold test, with no preference for plans that exceed the
threshold by a wider margin. It is therefore unsurprising that this procedure does not on its own
favor the creation of plans that greatly surpass the status quo in minority electoral opportunities.
But—so long as districts are population-balanced, contiguous, reasonably compact, and constructed
largely or entirely from intact precincts, as is the case across all our ensembles—maps generating
rough proportionality for all sizable minority groups might well be the ones that actually minimize
legal exposure under both the VRA and the Equal Protection Clause.

By shifting to an algorithm that has a tilted acceptance function favoring increased minority
electoral opportunities, we found it to be straightforward to create maps that fully meet (or even
exceed) rough proportionality simultaneously for multiple minority groups. For example, in Texas
we were able to create maps that are effective enough to typically meet rough proportionality simul-
taneously for both Latino and Black voters, while not sacrificing districts to double-counting—i.e.,
while achieving near-proportionality for people of color overall as well as for each group individ-
ually. A heuristic optimization algorithm can preferentially accept maps with higher minority
effectiveness. We carried this out with the general “short bursts” strategy outlined in Cannon,
Goldbloom-Helzner, Gupta, Matthews and Suwal, 2020; for details, see Supplemental Section H.

To be clear: maps proposed for adoption should be developed through human deliberation
based on significant community input and a broader range of criteria and values than our algorithm
incorporates. No map plucked from an ensemble is likely to satisfy all human desiderata off the
shelf. But just to demonstrate that a map with eight Latino-effective districts and four Black-
effective districts can be replaced by one with (at least) ten and five such districts, respectively, we
examine one demonstration plan found in a local search.

7.2 A demonstration plan

Our demonstration plan is depicted in Figure 11, and its effectiveness statistics by district are
shown in Table 6.

We emphasize that this map is not intended to be an ideal map. But it does show that a
carefully drawn plan could be dramatically fairer for historically underrepresented minority groups
in Texas. We call it a “demonstration map” because it demonstrates that the shortfall of minority
representation in the status quo map can be cured. The failure to do so can be attributed not to
geography or law, but only to line-drawing.

In Table 6, we have uncoupled the primary and general elections, to give a more detailed view of
the electoral history of these districts. In other words, this table shows the primary/runoff success
independent of the general-election outcome, while our effectiveness-scoring system requires wins
in both the primary (or primary and runoff) and the general, to be counted as a success. The
table shows that, using any of the three scores, the demonstration plan contains at least 11, and
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(a) Entire Plan

(b) Austin Area (c) Dallas-Fort Worth Area

(d) San Antonio Area (e) Houston Area

Figure 11: An interesting demonstration plan found by heuristic optimization.
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Demonstration Plan

CD Location
HCVAP Latino Effective BCVAP Black Effective WCVAP 14 Primaries 14 Gen

sunw sstate sdist sunw sstate sdist Latino Black (Dem.)

7 Houston 36.5 77 65 77 25.5 70 58 31 31.4 9-13 9-10 14

9 Houston 23.3 40 30 33 28.6 78 66 75 31.5 10-12 10-12 14

15 South Texas 78.8 97 98 96 1.7 8 9 6 17.5 12-14 10-11 14

16 El Paso 76.1 99 99 97 4.2 11 12 10 17.4 13-14 11-14 14

18 Houston 32.0 66 59 63 30.7 76 77 69 30.4 10-13 10-12 14

20 San Antonio 60.6 77 82 76 5.5 10 11 9 30.9 12-14 12-13 9

21 San Antonio 47.5 35 74 79 5.6 8 8 8 42.9 12-14 10-14 7

23 San Antonio 51.1 77 82 79 10.7 14 15 14 34.7 12-14 10-12 9

27 Austin/Gulf Coast 39.8 84 85 85 8.8 17 16 18 47.7 12-13 10-14 13

28 South/West Texas 81.4 91 95 96 1.0 7 8 6 16.6 11-14 9-11 14

29 Houston 33.4 70 57 75 25.5 70 58 52 35.5 9-11 9-12 14

30 DFW 15.5 20 15 13 31.8 85 84 69 48.5 9-10 10-11 14

32 DFW 24.1 24 26 28 24.4 52 67 62 44.9 10-13 12-14 10

33 DFW 37.0 85 80 66 32.9 96 97 88 25.1 10-11 13 14

34 South Texas 86.7 97 98 97 0.4 6 7 5 12.3 11-14 9-11 14

35 Austin 30.7 62 62 67 4.8 10 10 9 60.6 11-13 9-10 14

District 27 (with statewide candidates of choice)

Primary Election Primary Runoff Election General Election
Latino-Pref. Winner Latino-Pref. Winner Latino-Pref. Winner

President 2012 Obama Obama X Obama Obama X
U.S. Senator 2012 Sadler Sadler X Sadler Sadler X Sadler Sadler X

U.S. Senator 2014 Alameel Alameel X Alameel Alameel X Alameel Cornyn ×
Governor 2014 Davis Davis X Davis Davis X

Ag. Commissioner 2014 Friedman Friedman X Hogan Hogan X Hogan Hogan X
RR Commissioner 2014 Brown Brown X Brown Brown X

President 2016 Clinton Clinton X Clinton Clinton X
RR Commissioner 2016 Yarbrough Yarbrough X Yarbrough Yarbrough X Yarbrough Yarbrough X

U.S. Senator 2018 O’Rourke O’Rourke X O’Rourke O’Rourke X
Governor 2018 Valdez Valdez X Valdez Valdez X Valdez Valdez X

Lieutenant Governor 2018 Cooper Collier × Collier Collier X
Comptroller 2018 Mahoney Chevalier × Chevalier Chevalier X

Land Commissioner 2018 Suazo Suazo X Suazo Suazo X
RR Commissioner 2018 McAllen McAllen X McAllen McAllen X

Table 6: The demonstration plan has up to 16 minority-effective districts, as shown in the top
table, while the enacted plan has no more than 11 to 13 (compare Table 4 and accompanying text).
Scores over 60% have darker shading, and scores in the 50–60% range have lighter shading. The
frequency of primary and general election wins by minority-preferred candidates is shown in the
last two columns. Because different candidates of choice can be identified by the statewide and
district-specific method, the number of successes is given as a range. The bottom table shows that
candidates preferred by Latino voters statewide prevailed in District 27 in 12 of the 14 primaries,
5 of the 5 runoffs, and 13 of the 14 general elections. (With the candidates of choice inferred from
the district-specific method, there are 13 primary successes.)
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perhaps as many as 13, effective districts for Latino voters and at least 5, and perhaps as many
as 7, effective districts for Black voters. Because one district in the Dallas area (District 33) and
at least one in the Houston area (District 18) appear to be effective for both Black and Latino
voters, the total number of minority-effective districts in the demonstration plan is 14, 15, or 16,
depending on whether you rely on the unweighted, statewide, or district scores, respectively. Only
1 of the 16 districts is majority-White by CVAP.

Several of these 16 highlighted districts have demographics and effectiveness scores similar to
those of the minority-effective districts in the current enacted plan (compare Table 4). However,
in the current enacted plan, every district except Congressman Veasey’s District 33 follows the
rule that districts marked effective for Latino voters have HCVAP over 50% and those marked
effective for Black voters have BCVAP over 40%. By contrast, the demonstration plan presented
here features several effective districts with lower Latino and Black population percentages. For
example, the Austin-based District 27 is a Latino-effective district with an HCVAP a shade under
40%, and the Houston-based District 9 is a Black-effective district with a BCVAP of only 28.6%.
We emphasize that each of those demonstration districts earned its effectiveness score by voting for
the Latino- or Black-preferred candidates, respectively, in nearly every statewide election conducted
in the last decade.

This map refutes the notion that demographics is destiny when it comes to Texas congressional
districts. It contains districts that are majority-minority but not minority-effective (District 2),
majority-White but Latino-effective (District 35), plurality-White but Black-effective (Districts 9,
30, and 32) or Latino-effective (Districts 27 and 29), and plurality-Latino but Black-effective (the
two coalition districts, 18 and 33). There are also districts that are reliably Democratic but are
not effective for either Latino voters or Black voters (Districts 12 and 31).

Table 6 takes a single district and brings us back to the most basic facts about it: whether the
minority-preferred candidates actually won the most votes. We use as an example the plurality-
White but Latino-effective District 27, which starts in East Austin and stretches south toward the
Gulf Coast. For 11 of the 14 offices, the candidate preferred by Latino voters statewide prevailed
at every step in District 27: primary, runoff (when there was one), and general. In the 2014
general election, however, the Latino-preferred Democratic nominee David Alameel failed to carry
District 27 against Republican incumbent U.S. Senator John Cornyn; and in the 2018 Democratic
primaries for Lieutenant Governor and Comptroller, the candidates preferred by Latino voters
statewide (Michael Cooper and Tim Mahoney, respectively) failed to carry the district. This district
generated Latino-effectiveness scores of about 84 or 85%, far above our threshold for effectiveness
(60%) but below the scores for the map’s four most heavily Latino districts, which consistently
exceeded 90%.

7.3 Aggregate effectiveness

The use of a search technique tailored to raise the number of minority-effective districts might
lead us to wonder about the effect on the rest of the map. With respect to demographics alone,
redistricting is a fixed-sum activity: there are only so many Latino citizens of voting age in the state,
so building more districts with high HCVAP means there is less remaining HCVAP to distribute
across the other districts. We might worry that we can only secure a larger number of effective
districts by draining opportunities for coalitional influence from the rest of the state. But this is
not the case. Because of the highly nonlinear relationship between demographics and effectiveness
(see §6), it is possible to create some plans with a greater overall effectiveness than others.

To see this, let us consider the sum of the effectiveness scores for all 36 Texas congressional
districts. Because each district has a score between 0 and 1, the sum will fall between 0 and 36. To
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Figure 12: This trace plot shows a kind of aggregate effectiveness for Latino and Black voters,
formed by summing Latino and/or Black effectiveness scores over all 36 districts. This aggregate
effectiveness trends up markedly over the course of a heuristic-optimization run that preferentially
accepts plans with more districts effective for at least one minority group under the sstate score.
This drives up the sstate score (in blue) most, with the other two scores following behind. (See
Supplement H for details on related optimization runs.)

the extent that a group’s effectiveness scores behave like probabilities of electoral success, the sum
over the 36 districts can be regarded as the expected value for the group in a given election. This
expected-value score takes into account the probability but not certainty of electoral success in
the effective districts, and also includes contributions from other districts in which an effectiveness
score could fall well below .5 yet still reflect real political influence and a chance to win.

The enacted plan has an expected-value score a bit under 12, driven by 11 highly effective
districts. After a few thousand steps of a heuristic-optimization run (shown in Figure 12), the
expected-value score is well over 15, usually over 16, and it is possible to drive the expectation up
near 18 in the score being optimized. Our demonstration plan has an expectation of nearly 17,
which tracks with the 16 districts highlighted in Table 6.

We find that, with respect to electoral opportunity, districting is not a fixed-sum game. We
can find plans that combine Latino and Black voters with other population (including Asian-
American and White voters who tend to support the same candidates) in ways that lead to effective
combinations. We can create safe minority districts, likely-to-elect minority districts, and some
minority influence districts in a way that is especially beneficial in aggregate. This is a departure
from the narrower focus on effectiveness that is directly relevant for VRA compliance, but may still
point the way to a more coalitional expansion of minority opportunities beyond the demands of
the law.

8 Conclusion

The principal goal of this project is the design and study of a protocol for building ensembles of
alternative districting plans, taking closely into account the law of race and redistricting. We do
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this by using longitudinal electoral data, one of a choice of effectiveness scores, and a constrained
district-generation algorithm.

No inclusion criterion assessed by a computer could perfectly track the conclusions of a court
(not least because of variation in the judiciary itself), but ours is constructed to give us strong
justification for describing it as a representative sample of the universe of VRA-compliant plans.
We have pursued this objective in a way that also avoids overreliance on purely demographic targets
that might run afoul of the Equal Protection Clause.

The structure of our protocol is described in §4, and a detailed case study for Texas congressional
districts is detailed in §5. In §6 we confirm that the role played by the extensive electoral data is not
easily replaced by simpler proxies. And in §7 we explore the use of similar techniques to minimize
underrepresentation for minority groups—showing in particular that pushing to find plans that go
the farthest to cure long-standing underrepresentation is a markedly different task from creating
collections of alternatives that pass VRA muster. Studying the conditions of political and human
geography that make it possible to attain near-proportionality is an interesting direction for future
work.

With a detailed case study in the large, complex state of Texas, we confirm that our imple-
mentation lets us carry out the work on a time scale suitable for all stages of redistricting, from
considering plans for possible adoption all the way to challenging them in litigation. We have made
careful use of error estimates, performed tests of quality for ensemble generation, and confirmed
robustness of the method across reasonable variations in the steps. By making our code and data
public (MGGG Redistricting Lab, 2020a), we aim to make it possible for other researchers and
practitioners to use this method on the ground.

This tool now makes it possible to assess proposed districting plans in racially diverse states
against a baseline that takes the Voting Rights Act and the Equal Protection Clause into account.
The computational tools for redistricting are continually becoming both more powerful and more
refined, facilitating the creation of new maps that better meet our ideals of fairness and helping to
understand maps in the context of realistic alternatives. By using novel tools in combination with
renewed commitment to safeguarding minority representation, we can come closer than ever to the
goal articulated by John Adams almost 250 years ago, in the midst of the American Revolution: to
make our representative assemblies “in miniature an exact portrait of the people at large” (Adams,
1776, 108).
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Bethune-Hill v. Virginia State Bd. of Elections. 2017. 137 S. Ct. 788.

Bialik, Kristen. 2019. “Pew Research Center: For the Fifth Time in a
Row, the New Congress Is the Most Racially and Ethnically Diverse Ever.”
https://www.pewresearch.org/fact-tank/2019/02/08/for-the-fifth-time-in-a-row-

the-new-congress-is-the-most-racially-and-ethnically-diverse-ever/.

Brown v. Thomson. 1983. 462 U.S. 835.

Bush v. Vera. 1996. 517 U.S. 952.

Campos v. City of Baytown. 1988. 840 F.2d 1240 (5th Cir.).

Cannon, Sarah, Ari Goldbloom-Helzner, Varun Gupta, JN Matthews and Bhushan Suwal. 2020.
“Voting Rights, Markov Chains, and Optimization by Short Bursts.” On file with authors.

Cannon, Sarah, Moon Duchin, Dana Randall and Parker Rule. 2020. “A reversible recombination
chain for redistricting.” On file with authors.

Carter, Daniel, Gregory Herschlag, Zach Hunter and Jonathan Mattingly. 2019. “A Merge-
Split Proposal for Reversible Monte Carlo Markov Chain Sampling of Redistricting Plans.”
arxiv:1911.01503 .

Chen, Jowei. 2017. “The Impact of Political Geography on Wisconsin Redistricting: An Analysis
of Wisconsin’s Act 43 Assembly Districting Plan.” Election Law Journal 16(4).

Chen, Jowei and Nicholas O. Stephanopoulos. 2021. “The Race-Blind Future of Voting Rights.”
Yale Law Journal 130(4):862–946. Available at https://www.yalelawjournal.org/pdf/CS_

fkm4m4bz.pdf.

Common Cause v. Lewis. 2019. No. 18 CVS 014001, 2019 WL 4569584 (N.C. Super. Ct., Wake
Cty. Sept. 3) (three-judge court).

Cooper v. Harris. 2017. 137 S. Ct. 1455.

Cox v. Larios. 2004. 542 U.S. 947.

DeFord, Daryl and Moon Duchin. 2019. “Redistricting Reform in Virginia: Districting Criteria in
Context.” Virginia Policy Review XII:120–146.

39

https://www.pewresearch.org/fact-tank/2019/02/08/for-the-fifth-time-in-a-row-the-new-congress-is-the-most-racially-and-ethnically-diverse-ever/
https://www.pewresearch.org/fact-tank/2019/02/08/for-the-fifth-time-in-a-row-the-new-congress-is-the-most-racially-and-ethnically-diverse-ever/
https://www.yalelawjournal.org/pdf/CS_fkm4m4bz.pdf
https://www.yalelawjournal.org/pdf/CS_fkm4m4bz.pdf


DeFord, Daryl and Moon Duchin. 2020. Random Walks and the Universe of Districting Plans. In
Political Geometry, ed. M. Duchin and O. Walch. Birkhäuser. Under contract.
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A Compressing probability distributions

In this appendix, we detail a method to record precinct-level probabilistic information in a con-
densed form, so that the distributions can be efficiently recovered at every step of a Markov chain.
The strategy is to compress a histogram into octiles, storing only eight “bars” instead of dozens or
hundreds.
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Figure 13: Original (blue), compressed (red), and reconstituted (green) probability distributions.
The model incorporates a turnout estimate by including “None” as a candidate. The reconstituted
distributions reflect the original histograms remarkably closely, even though only eight histogram
bars were stored in each case.

Figure 13 demonstrates the precinct-level EI estimation process for two precincts in Texas. This
example comes from the 2018 Democratic gubernatorial primary runoff. The left plot (blue) shows
estimated support levels for Valdez, White, and “None” (CVAP minus the vote for the candidates)
by Latino and Black voters, shown with a detailed histogram in which each number of votes is
recorded separately with its observed frequency for 1000 draws from EI. The center plot (red)
shows the coarse histograms approximating the distributions of these EI draws, by binning them
into eighths (octiles). In particular, by saving the values of the end points of each 12.5% interval,
we can approximate the vote-count distribution by saving only nine values. In the plot, the vote
axis is divided at these endpoints, and each bar has the same mass. The right plot (green) shows
the samples re-drawn from the coarse histogram, performed quickly during a ReCom run.

The re-draws closely resemble the original samples, as shown by how closely the reconstituted
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histograms (green) match the original detailed histograms (blue). Notably, this is true regardless
of the shape of the distributions. By contrast, a common practice is to assume that certain types
of random draws are reasonably approximated by normal distributions, which can be saved very
efficiently using only two values (a mean and variance) and then easily resampled. But these
examples show that vote-count distributions can be highly skewed (and in inconsistent ways),
which would not be well approximated by normal distributions. With our resampling methods,
however, we can recover a very close estimate to the original distribution from a highly compressed
data format, without having to make any assumptions about the shapes of vote-count distributions.

Finally, we note that this kind of EI method does implicitly rely on an assumption of inde-
pendence between these outcomes. That is, even though we recover the individual vote-count
distributions, we do not attempt to recover the joint distribution of these counts across candidates.
For example, a precinct-level EI draw that has a very high vote share for Valdez is likely to have
a low share for White, but these interdependencies are not included in the model, which merely
recovers the individual histograms.
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B Logit adjustment

Here, we describe the details for the calibration step (logit adjustment) for Texas. For each score
component, we calibrated the raw score with observed performance using logistic regression (logit)
models. Specifically, we measured the raw effectiveness scores for each district in each of the three
enacted plans (congressional, state Senate, and state House) and began by labeling each district
with a 0 or 1 based on observed performance of each of these districts across all elections held using
these plans. For example, in Texas, this gives us 822 data points for each score component (145
congressional, 77 state Senate, and 600 state House).

Figure 14: Logit curves calibrating Latino, Black, and Neither effectiveness for the unweighted,
weighted/statewide, and weighted/district scores. Raw scores are on the x axis and calibrated
scores are on the y axis. The histogram bars depict the frequency of effectiveness scores for the
labeled data, with upward blue bars representing the 0-labeled district–elections and downward red
bars representing the 1-labeled district–elections.

We label each of these district–elections with a 1 in the Latino classification if if the candidate
with the most votes was either a Latino Democrat or a Democrat in a district that is plurality-Latino
by CVAP and a 0 otherwise; and similarly for the Black classification. The Neither label is given
by the complement of the union of those success conditions. We then use these classifications to
fit a logit model using LogisticRegression from the scikit-learn Python machine-learning library,
with an L2 penalty and balanced class weights (to account for the large imbalance in class size).
The fit logistics are of the form f(x) = 1

1+exp (−ax−b) for the (a, b) shown here.

unw state dist

Latino (10.4, 2.4) (10.4, 2.5) (9.8, 2.7)

Black (11.4, 2.2) (11.4, 2.0) (11.2, 2.4)

Neither (7.5, 3.9) (7.6, 3.7) (6.9, 2.7)
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C Candidates of choice in Texas elections

Table 7 shows the list of candidates for the Texas elections in our dataset, with the statewide
candidate of choice marked for both Latino and Black voters. In the large majority of contests,
these two groups agree on a candidate of choice.

Most statewide candidates of choice in this table are assessed 100% confidence because they
came out ahead on each of the 1000 draws from the EI probability distribution computed in eiPack.
The number of times that each listed candidate was drawn first is recorded in the table. (For more
details and a sample script, see the EI Note in our GitHub repository: MGGG Redistricting Lab
(2020a).)

Year Election Type Candidates Leading Draws Race Party

2012 President Primary

Obama 1000 1000 Black Democrat
Richardson 0 0 White Democrat

Ely 0 0 White Democrat
Wolfe 0 0 White Democrat

2012 President General
Romney 0 0 White Republican
Obama 1000 1000 Black Democrat

2012 U.S. Senator Primary

Allen 0 110 Black Democrat
Hubbard 0 0 White Democrat

Sadler 1000 832 White Democrat
Yarbrough 0 58 Black Democrat

2012 U.S. Senator Primary Runoff
Sadler 1000 1000 White Democrat

Yarbrough 0 0 Black Democrat

2012 U.S. Senator General
Cruz 0 0 Latino Republican

Sadler 1000 1000 White Democrat

2014 U.S. Senator Primary

Alameel 1000 1000 White Democrat
Kim 0 0 Asian Democrat

Rogers 0 0 Black Democrat
Scherr 0 0 White Democrat

Fjetland 0 0 White Democrat

2014 U.S. Senator Primary Runoff
Alameel 1000 1000 White Democrat
Rogers 0 0 Black Democrat

2014 U.S. Senator General
Cornyn 0 0 White Republican
Alameel 1000 1000 White Democrat

2014 Governor Primary
Madrigal 0 0 Latino Democrat

Davis 1000 1000 White Democrat

2014 Governor General
Abbott 0 0 White Republican
Davis 1000 1000 White Democrat

2014 Agriculture Commissioner Primary
Fitzsimons 0 0 White Democrat

Hogan 8 1000 White Democrat
Friedman 992 0 White Democrat

2014 Agriculture Commissioner Primary Runoff
Friedman 0 0 White Democrat

Hogan 1000 1000 White Democrat

2014 Agriculture Commissioner General
Miller 0 0 White Republican
Hogan 1000 1000 White Democrat

2014 Railroad Commissioner Primary
Henry 0 0 White Democrat
Brown 1000 1000 Black Democrat

2014 Railroad Commissioner General
Brown 1000 1000 Black Democrat
Sitton 0 0 White Republican

2016 President Primary

Judd 0 0 White Democrat
De La Fuente 0 0 Latino Democrat

Clinton 1000 1000 White Democrat
Locke 0 0 White Democrat

O’Malley 0 0 White Democrat
Sanders 0 0 White Democrat
Wilson 0 0 Black Democrat
Hawes 0 0 Other Democrat

2016 President General
Clinton 1000 1000 White Democrat
Trump 0 0 White Republican
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Year Election Type Candidates Leading Draws Race Party

2016 Railroad Commissioner Primary
Burnam 0 0 White Democrat

Yarbrough 900 1000 Black Democrat
Garrett 100 0 White Democrat

2016 Railroad Commissioner Primary Runoff
Yarbrough 836 1000 Black Democrat

Garrett 164 0 White Democrat

2016 Railroad Commissioner General
Yarbrough 1000 1000 Black Democrat
Christian 0 0 White Republican

2018 U.S. Senator Primary
Kimbrough 0 0 Black Democrat
Hernandez 0 0 Latino Democrat
O’Rourke 1000 1000 White Democrat

2018 U.S. Senator General
Cruz 0 0 Latino Republican

O’Rourke 1000 1000 White Democrat

2018 Governor Primary

Wakely 0 0 White Democrat
Clark 0 0 Other Democrat
Payne 0 0 White Democrat

Yarbrough 0 0 Black Democrat
Davis 0 0 Black Democrat

Ocegueda 0 0 Latino Democrat
Valdez 1000 1000 Latino Democrat
White 0 0 White Democrat

Mumbach 0 0 White Democrat

2018 Governor Primary Runoff
Valdez 1000 429 Latino Democrat
White 0 571 White Democrat

2018 Governor General
Abbott 0 0 White Republican
Valdez 1000 1000 Latino Democrat

2018 Lt. Governor Primary
Cooper 1000 1000 Black Democrat
Collier 0 0 White Democrat

2018 Lt. Governor General
Patrick 0 0 White Republican
Collier 1000 1000 White Democrat

2018 Comptroller Primary
Mahoney 1000 879 White Democrat
Chevalier 0 121 Black Democrat

2018 Comptroller General
Hegar 0 0 White Republican

Chevalier 1000 1000 Black Democrat

2018 Land Commissioner Primary
Suazo 1000 1000 Latino Democrat

Morgan 0 0 White Democrat

2018 Land Commissioner General
Bush 0 0 Latino Republican
Suazo 1000 1000 Latino Democrat

2018 Railroad Commissioner Primary
McAllen 1000 0 Latino Democrat
Spellmon 0 1000 Black Democrat

2018 Railroad Commissioner General
Craddick 0 0 White Republican
McAllen 1000 1000 Latino Democrat

� Preferred by Latino voters and Black voters � Preferred by Latino voters � Preferred by Black voters

Table 7: Texas elections used for analysis, with the statewide candidate of choice marked for Latino
and Black voters. We record the number of times that the candidate got the most votes out of
1000 draws from the Latino voter-preference distribution, followed by the Black voter-preference
distribution (for instance, in the 2018 Governor runoff election, Valdez got the most votes from
Latino voters in all 1000 draws, while getting the most votes from Black voters in 429 of 1000 draws).
Only major-party candidates are included for general elections, and only Democratic primaries and
runoff elections are considered. We have also excluded elections with uncontested primaries, as well
as judicial contests.
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D Adapting for multiple groups

In a state with only a single salient minority (for example, Black voters in Louisiana, as discussed in
Supplement E), a district’s effectiveness score is a single number between zero and one, representing
the probability that the district is effective for Black voters. For a state like Texas, however, where
both Latino and Black voters may raise plausible VRA claims, the effectiveness determination
becomes more complex. It may be tempting initially to address these voting groups independently,
by simply calculating a Latino effectiveness score and separately calculating a Black effectiveness
score. However, scores determined that way could be misleading. Suppose a district was estimated
to have a 50% Latino effectiveness score and a 50% Black effectiveness score. That could aptly
describe a situation in which a district is always effective for either Latino or Black voters but
never elects a candidate preferred by both groups, instead alternating from election to election.
Or it could equally well describe a scenario where a district elects a consensus candidate preferred
by Latino and Black voters alike half the time, and a candidate preferred by neither group the
other half of the time. And of course there are scenarios in between those extremes, as depicted in
Figure 15. Disambiguating between aligned and mutually exclusive success will help ensure that the
plans we judge to be VRA-compliant do not secure effective districts for one group at the expense
of the other.

.5 .5
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Latino effective Black effective
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Latino effective Black effective
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Latino effective Black effective

.3 .3
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Figure 15: A district may be effective for Latino voters, Black voters, both groups, or neither. The
figure shows three different ways that a district could have a 50% chance of performing for Latino
voters and a 50% chance of performing for Black voters.

To address this complexity, our scores have four components: first, effectiveness for Latino
voters but not Black voters (abbreviated L); second, effectiveness for Black voters but not Latino
voters (B); third, simultaneous effectiveness for both Latino and Black voters (Ov, for Overlap);
and fourth, effectiveness for neither Latino nor Black voters (N). Since these four cases are mutually
exclusive and exhaustive, the components must sum to one.

Here, raw Latino-effectiveness scores and raw Black-effectiveness scores are calculated exactly
as they would be in a single-minority-group state, without regard to interactions between the
effectiveness for one group and the other. Neither-effectiveness is handled similarly, designating
neither-successful elections as those where the minority-preferred candidate(s) lost.

48



We then calibrate each of these three raw scores individually, using the adjustment described
in §4.4 and Supplement B. Having three calibrated effectiveness scores allows us to solve for the
four individual Venn diagram components, which we can denote by four components with L+B+
Ov+N = 1.33 So the first district in Figure 15 has L = .5, the second has L = 0 and the third has
L = .3. For a district to be deemed effective for Latino voters, it should have L + Ov > T , where
T is the effectiveness threshold set in §4.5 (for example, T = .6). To be deemed simultaneously
effective for Latino and Black voters, it should satisfy both L+Ov > T and B +Ov > T .

In a state like Texas, with two sizable minority groups, we would examine effectiveness scores
computed for the districts in the benchmark plan to observe its number of districts currently over
the prescribed threshold T of effectiveness for Latino voters, Black voters, both groups, and neither
group. We denote these numbers in a four-tuple with the following order: (Latino only, Black only,
Overlap, Neither). To be included in our VRA-conscious ensembles, a proposed plan must meet or
exceed the number of effective districts for Latino voters and for Black voters, separately, while also
meeting or exceeding the overall number for both groups. For instance, with 21 districts, suppose
the benchmark plan has eight effective districts for Latino and/or Black voters with a (5, 2, 1, 13)
split. Then we would require a proposed plan to have at least 5 + 1 = 6 Latino-effective districts,
at least 2 + 1 = 3 Black-effective districts, and at least 5 + 2 + 1 = 8 distinct districts overall that
are effective for Latino voters, for Black voters, or both.

33We solve for these via L + Ov = Latino effectiveness, B + Ov = Black effectiveness, N = Neither effectiveness,
while L + B + Ov + N = 1. It is possible to end up with calibrated scores for Latino, Black, and Neither leaving
no non-negative solution for the components (e.g., L + Ov = .8, B + Ov = .65, N = .25). In this case we treat the
effectiveness scores for Latino and Black groups as primary and adopt the closest feasible Neither score (in this case
N = .2). Adjusting the Neither score is preferable to asymmetrically adjusting the minority-group scores or seeking
a simultaneous adjustment for both.
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E Case study: Louisiana

To confirm that the protocol here has applicability beyond the Texas congressional districts, we
briefly report results from a second trial carried out on congressional and state Senate plans for
Louisiana, which have 6 and 39 districts, respectively. Louisiana has 31.4% BCVAP, per 2018 ACS
data, which indicates that a proportional share of effective districts would call for 1.9 congressional
districts and 12.2 state Senate districts. The current map has one congressional district and 11
state Senate districts that are effective for Black voters.

Data preparation for Louisiana is similar to Texas, except that the precinct shapefiles provided
by the State exhibit more frequent changes, calling for careful geodata-matching work to produce a
shapefile that can support longitudinal election results from 2015 to 2019. This gives us a somewhat
smaller election dataset than in Texas. In addition, Louisiana has a nonpartisan primary (dubbed a
“jungle primary” or “Cajun primary”) used in all but presidential contests; if no candidate surpasses
50% of the statewide vote, then the top two vote-getters advance to a general election (effectively,
a runoff). Our dataset began with 11 election sets, with primaries paired with generals when
appropriate. We excluded one election (State Treasurer in 2015) because the primary featured two
Republicans and no Democrats (in a state where Black voters overwhelmingly vote Democratic),
leaving us with ten election sets for use in the VRA-conscious protocol. Success for the Black-
preferred candidate is assessed in a district when that candidate either (a) receives a majority in
the primary, (b) achieves a plurality in the primary and the Democratic candidate receives the
most votes in the paired general, or (c) achieves a plurality in the primary but there is no general
because of a statewide majority for some (possibly different) candidate.

Other elements of the VRA protocol are similar to Texas, but greatly simplified by needing to
consider only one minority group. Effectiveness for Black voters is computed with the same formula
(
∑
wδ/

∑
w) described in §4.3, using the same election weight factors. A logit adjustment step is

conducted to calibrate effectiveness for Black voters to the empirical record of representation at all
three levels of statewide redistricting. An effectiveness threshold of 65% is now used, rather than
60%, to reflect the greater margin of error that comes with a smaller dataset.

Figure 16: Scatterplot of districts from a Louisiana state Senate ensemble (39 districts), plotted
by BCVAP vs. partisan lean as in the Texas examples. Data points are colored by the calibrated
sstate statewide effectiveness score for Black voters.
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For the congressional plans, we are easily able to produce a supply of alternative plans with one
highly effective district and a second or even third potential “influence” district, while maintaining
much better compactness than the enacted plan. In a state Senate run with our VRA-conscious
protocol, we find numerous plans with 12 Black-effective districts, even though 11 districts suffice
for acceptance.
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F Convergence heuristics

We continue with additional figures in the style of §5.4.1, demonstrating multistart heuristics and
ensemble comparisons.

Figure 17: Multistart heuristics for Democratic vote share in the 2016 presidential general election
in two sets of ensembles. Top, three constrained ensembles using the sdist score, each starting at
a different seed map. Bottom, analogous plot for the sunw score with the same seeds. Each shows
good multistart agreement. Between the top plot and the bottom, the colored markers are exactly
identical and the boxes-and-whiskers are nearly indistinguishable.
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Figure 18: Ensemble comparisons. Together with Figure 8, we see that the non-VRA ensemble and
the CVAP-shares ensemble resemble each other; imposing a CVAP threshold has not materially
impacted the number of effective districts.
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G Regression and classification results

In this appendix, we present further classification and regression results to extend the discussion
in §6. We also compare and contrast our findings to the model described in Drawing Effective
Minority Districts: A Conceptual Framework and Some Empirical Evidence (Grofman, Handley
and Lublin, 2001, 1430 figure 4).

Based on their empirical investigation, Grofman–Handley–Lublin suggested that an elbow-
shaped frontier with two linear segments might be needed to cut out the effectiveness zone in a
plot of demographics and partisanship like the ones we present here. One line in the frontier would
ensure the composition needed to win a Democratic primary and the other would correspond to
success in the general election.

Primary

General

Figure 19: Three possible “electoral success” plots in the Grofman–Handley–Lublin framework,
with Black population prevalence on the x axis and Democratic partisan lean on the y axis. Com-
pare to Figure 20 below.

The “joint” in their elbow was projected to have a relatively low minority CVAP and a Demo-
cratic share over 50%. On this account, the frontier for primary success should run “northeast”
from the elbow because of the need for minority demographic control as a district becomes more
Democratic. The frontier for general election success would run “southeast” from the elbow because
greater minority share would help offset White Democratic defection if a minority-preferred can-
didate is nominated. Though the correspondence is not perfect, this comports fairly well with the
patterns “learned” by KNN classification (Figure 20), especially if we recall that very few effective
districts can be found below the square’s midline. Note though that the primary frontier is nearly
vertical—this tracks with especially low polarization observed in Texas Democratic primaries.

Figure 20: KNN classification fit to a yes/no label at the 60% effectiveness level for Latino and
Black voters in Texas.

Next, we present the results of decision-tree models that find the best rectangular approximation
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of the effectiveness zone. This would correspond to a rough rule of thumb such as districts are
likely to be effective if they are at least X% minority by CVAP and at least Y% Democratic. The
classification model essentially solves for the best X and Y by using a balanced accuracy metric.
The accuracy achieved here is unsurprisingly lower than for KNN classifiers, because the form of
the frontier is more constrained. The interesting findings here, shown in Figure 21, are that a
Democratic share of nearly 50% together with about 30% HCVAP or about 23% BCVAP are the
best threshold correlates of effectiveness. (Compare to the demographic thresholds of 45% HCVAP
and 25% BCVAP used above in §5.4.)

Figure 21: Decision trees fit to a yes/no label at the 60% effectiveness level for Latino and Black
voters in Texas.

Finally, we include one more sample plot to test the hypothesis that district effectiveness is
easier to classify if Latino and Black populations are combined. We find that the model outputs
are less accurate than for the racial groups considered one at a time.

Figure 22: With Latino and Black population combined, it is even harder to describe the pattern
of effectiveness. This finding holds up across various styles of regression and classification that we
attempted.
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H Heuristic optimization

Our goal for heuristic optimization was to find a map with five Black-effective districts and ten or
eleven Latino-effective districts, while ensuring that at least 15 are effective for at least one group.
Here, the goal was not to draw a representative sample from the set of all valid plans, or even to see
typical properties of especially good plans. Rather, we merely seek examples of interesting plans. To
do this, we use the proposal-generation mechanism of ReCom and insert local-search optimization
techniques with a specified objective function keyed to the effectiveness scores. Finding provable
optima in a setting like this is NP-hard, and we emphasize that these short searches have almost
certainly not located global optima. But we can still expect to find maps with good features in this
way; the demonstration map featured in §7 was derived from a run of this local-search algorithm.

Suppose there are k districts in plan P , denoted P1, . . . , Pk. Consider the piecewise function

g(x) =


1 x ≥ .6
5x− 2 .4 ≤ x ≤ .6
0 x ≤ .4

.

One possible objective function F on the space of plans is defined by

F (P ) =
k∑

i=0

g(sL(Pi)) +
k∑

i=0

g(sB(Pi))−Ov(P ),

where Ov is the number of effective districts for both Black and Latino voters and sL(Pi) and
sB(Pi) are effectiveness scores of district Pi for Latino and Black voters, respectively.

The objective function incorporates Latino-effectiveness across all districts and Black-effectiveness
across all districts, applying the function g to each so that scores less than 40% do not contribute
to objective function value, the contribution rises quickly as effectiveness scores rise to 60%, and
no additional contribution occurs after passing the 60% threshold. Finally, the overlap term is
subtracted off to mitigate double-counting, since overlap contributes to both of the other terms.

For our optimization runs we tried various schemes to preferentially accept proposals with higher
F values, such as by accepting lower-scoring proposals with a fixed probability, or by a probability
based on the difference F (P )− F (Q) when proposing a move from map P to map Q.

We iterate steps of this procedure, following the short bursts method from Cannon, Goldbloom-
Helzner, Gupta, Matthews and Suwal, 2020. To use short bursts, we choose a burst length of b and
run the chain normally in batches of b steps. The map with the highest score in each batch of b
steps is used as the starting position for the subsequent batch.

We chose b = 50 after experimenting with different values. After just a few thousand steps of
this procedure, we are routinely finding maps with far more measured opportunity for minority
voters than the levels seen in the current enacted plan. (See Figure 12 for a similar optimization
run.) We make no claims to have pushed heuristic optimization to anywhere near its limits, and
we welcome other approaches for finding interesting plans.
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