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Chapter 17

Randomwalks and the
universe of districting plans

DARYL DEFORD AND MOON DUCHIN

CHAPTER SUMMARY

Random sampling is a key idea across this book, and a leading way to do that is to
let a “random walker” loose in your universe to collect samples as they explore. The
mathematical framework for this is called Markov chains. This chapter is the place
where we dig into Markov chains and MCMC: the motivation, the theory, and the
application to redistricting.

1 OVERVIEW: NOT A SOLVED PROBLEM

This book has already describedmany ways in which themodern computing era
has revolutionized redistricting: on one hand, an explosion in the sheer amount
and diversity of data thatmap drawers are able to integrate into theirmethodology;
on the other hand, serious algorithmic innovations and expanded computing
power for actually constructing plans. It is now easily possible to generate millions
of distinct, reasonable plans on a standard laptop in an afternoon, something that
would have been unthinkable a few years ago. As access to these data and software
has becomemore widespread, new theoretical developments and applications
have changed the way we think about redistricting.

In this chapter we will explore uses ofMarkov chains or randomwalkmethods for
generating large collections of districting plans and applications of the resulting
ensembles. These techniques have been successfully applied in court cases and
legislative reform efforts and are playing an increasingly large role in the design
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of both plans and legislation. The underlyingmathematical concepts are widely
used inmany other scientific fields and transferring these techniques to this new
setting has led to some great successes in studying redistricting plans.

At a high level,Markov chainMonte Carlo (MCMC) attempts to generate districting
plans from a distribution that is “tuned” to satisfy some version of each state’s
legal criteria, without incorporating explicit partisan biases. The new plans are
generated bymaking iterative changes to a given initial plan while continuing to
satisfy the legislative rules. We outline the robust mathematical theory that guar-
antees that good samples can be constructed, given sufficient time. This gives us
an approach to what youmight think of as the holy grail for understanding district-
ing plans in context: baseline ranges for all kinds of planmetrics that incorporate
state rules and voter geography and help us understand the properties of “typical”
“reasonable” plans. Back in the 1940s–1960s, when the U.S. courts were trying to
figure out how and whether to engage with redistricting, this baseline challenge
was laid out by Justice Felix Frankfurter as a prerequisite for thinking clearly about
gerrymandering.

Since we’re already talking about the holy grail, it’s time to introduce our research
team’s religiousmantra:

This is intended both as a reminder and as an exhortation. We do have some wis-
dom about what does and does not work after several years of focusedwork on this
problem, but we do not have all the answers about the best ways to applyMarkov
chainmethodologies to our redistricting problems. There aremany challenging
math problems yet to be tackled—both some relatively low-hanging fruit and some
devilishly hard questions—and we hope to provide pointers to researchers looking
to enter this area.

Finally, a major goal of this chapter will be to debunk the notion that all computer
techniques, or all randommap generation techniques, are created equal. In math
we like to call a choice “canonical” (echoing religion again) if it is dictated in a
standardized and unique way. We’ll see that there’s very little canon in redistricting
and an ineliminable array of modeling choices. We will highlight opportunities
for greater community consensus on methods and practices that will promote
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more consistent, reliable, and repeatable results. Redistricting is a relatively new
application domain for thesemethods and there are many challenging questions
at the boundary of current research in this area.

The remainder of this chapter is organized as follows: First, we provide high-level
motivation for the focus on sampling rather than optimization. Next, we describe
the basic underlying idea of Markov chains, Monte Carlo, andMCMC. Finally, we
connect thismethodology to its current state-of-the-art applications to court cases
and reform efforts, also highlighting some of the exciting new avenues for future
work.

A GLOBAL VIEW OF THE LANDSCAPE OF PLANS

The previous chapter gave a great guided tour from the history to the present day
in computational redistricting, from punch-cardmethods in the 1960s through
moremodern integer programming or power diagrams. Many of the algorithms
developed for redistricting operate by attempting to optimize a particular score or
metric, but do not aspire to generate representative samples from the enormous
space of possible districting plans. Even themethods that include some stochas-
ticity (or random steps) mostly do not provide guarantees about the diversity or
distribution of plans that are generated.

The last decade’s litigation aroundpartisan gerrymanders has spawned aparticular
type of counterfactual argument based on the neutrality of randommaps. Suppose
that a randomized algorithm which is not provided with partisan information,
constrained only by (some instantiation of) the traditional districting principles, is
shown to never, or at least rarely, generate amapwhose partisanmeasurements
are as extreme as those in the challenged plan. We are invited to conclude that the
challenged plan is an impermissible partisan gerrymander. In order to justify this
argument, wemust be persuaded that the sampling methodology is generating
representative districting plans. To see the perils of mistaking random for represen-
tative, imagine that I have a favorite districting plan. I can instruct a computer to
select one census unit in the plan that is on the border between districts 1 and 2,
and to randomly assign that unit either to district one or district two by a coin flip.
I then run this algorithm 100 times and, behold! it gives me back 47 plans with the
unit assigned to district 1 and 53 with the unit assigned to district 2. It would be
obviously unreasonable to conclude anything at all from this highly specialized
collection of 100 plans, even though they have indeed been randomly generated
by a computer.

This is whereMarkov chains enter the scene. The thing that differentiates MCMC
methods from other algorithms is the explicit focus on a particular distribution
over all permissible districting plans. Additionally, the ergodic theorem (Sidebar
17.4) states that if we can generate sufficiently many samples, the distributions of
statistics that we are interested in will converge to a stable distribution over the
full universe of possibilities. This is what makes it reasonable to describe a given
plan as a statistical outlier.

Although the application that motivatedmuch of this research developed in the
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adversarial court setting, recent analyses have used the same technique to evaluate
and assist reform efforts. Here the question is not, “Was a specific map drawn
with improper purpose?” but rather “Howwould changing the rules change the
underlying distribution?” shifting the evaluation from comparing a single map to
a distribution to comparing how distributions result from the design of the rules.
This evolution has introducedmany new research questions that subtly depend
on details of the implementations andmethodology.

The underlying premise of both of these research directions—outlier analysis and
rule design—is that MCMC can be used to discover neutral baselines of arbitrary
metrics across the space of districting plans. Even simply comparing these base-
lines to each other, across elections or states, is already offering new insights into
the geospatial structure of American elections and redistricting. It has also guided
understanding of the fundamental properties of themetrics that have been pro-
posed in the past as proxies for good redistricting quality.

To begin, we need to address the following questions:

• What is a districting plan?

• How do we know that a districting plan is permissible?

• How do we know that a districting plan is desirable, or even plausible?

• How do we define a distribution that prioritizes plausible or desirable dis-
tricting plans?

• How can we sample from such a distribution?

We shouldn’t expect punchy, universal answers to these questions. Each state has
different rules and laws that govern the redistricting process, as well as different
political geography that shapes the landscape of possibilities. This chapter will
explore howMCMC sets us up for a promising suite of approaches.

2 INTRODUCTION TO MCMC

Let’s dive in with a friendly introduction to the ideas and background ofMarkov
chain sampling on discrete state spaces. Applications to political districting have
created a renewed interest in these methods among mathematicians, political
scientists, geographers, computer scientists, and legal scholars (among others)
and this introduction is aimed at presenting the underlyingmathematicalmaterial
in an intuitive fashion for all of those audiences. The goal is to present the key
ideas without the need for a significant amount of mathematical background
or formalism. Math-ier information will mostly be in sidebars. For additional
tools exploring these ideas see the GitHub repository associated with this book
(https://github.com/political-geometry/).

https://github.com/political-geometry/
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17 .1 EXPECTATION AND SAMPLING

A probability distribution is a function that assigns a probability or likelihood to various
events. A random variable is a variable whose value is determined as the result of a
draw from the distribution. We’ll focus on the case that there are finitely many possible
outcomes, so that the sum of their probabilities is one. We’ll call each outcome a
state and the universe of possible outcomes the state space.

An example is rolling a fair die: the state space is {1,2,3,4,5,6} and each value has a
1/6 chance of being on top when the die stops moving. This is an example of a uniform
distribution, where each outcome has exactly the same probability of occurring. An
example of a non-uniform distribution is picking a random letter out of the previous
sentence, which gives E and I the highest weight and gives J ,Q,Y , Z no weight at all.

The expected value of a random variable is a weighted average of the values of the
state space: we multiply each value by its probability and add them up. (Notice that
the uniform distribution just gives back the usual average.) So for the fair die roll, we
get the expectation

E(X ) = 1

6
·1+ 1

6
·2+ 1

6
·3+ 1

6
·4+ 1

6
·5+ 1

6
·6 = 21

6
= 3.5

Notice that although we will never actually roll a 3.5 on a six-sided die, it does represent
a type of average value: if we rolled the die many times and recorded a large sample
of random outcomes, the sample average would converge to 3.5.

The same calculation approach applies when the probabilities are not equal, which
changes the weights on the values. For example, if we have a loaded die that is
weighted so that 3 comes up 3/10 of the time, 4 and 5 come up 1/10 of the time
each, and 6 comes up half of the time, then the long-term expectation would be
.3(3)+ .1(4)+ .1(5)+ .5(6) = 4.8.

One of the fundamental results of all of mathematics is the Central Limit Theorem.
Suppose a random variable is drawn from a probability distribution with true expectation
µ and variance var. It does not matter what the shape of that distribution is! If the
variable is sampled independently from that distribution, and we let µn be the average
value of n observations, then the distribution of µn converges to a normal with mean
µ and variance var/n. This means that if you can only study a random variable by
sampling in a “black box” fashion, the experimental evidence helps you to estimate
the true expectation. The larger your experiment, the less variance in your estimate.

2 .1 MONTE CARLO METHODS

Monte Carlo methods study the aggregate properties of random samples. The ori-
gin story for formal Monte Carlo analysis is a deterministic solitaire game played
bymathematician Stanislav Ulamwhile he was sick in bed [1]. (“Deterministic”
games are those with no choices to make, such as the game of War—the winner
is just determined by the shuffle.) Ulam wanted to figure out how often a ran-
domly shuffled deck would lead to a win. The exact calculation was out of reach,
since there are 52! = 80,658,175,170,943,878,571,660,636,856,403,766,975,289,505,-
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440,883,277,824,000,000,000,000 possible shuffles. But once you’ve analyzed what
makes a winning shuffle, you can have a computer repeatedly carry out a sequence
of games and see how often youwin. This is exactly the type of task that computers
are excellent for, since they execute instructions exactly and do not complain of
boredom (or of repetitive strain injury).

The same general outline that we applied here is common to most examples of
Monte Carlo methods. In sketch:

1. Draw an (independent) sample from the set of all possibilities;

2. Extract some data for each sample;

3. Repeat many times;

4. Average/aggregate the derived data.

Following this procedure offers a way to generate approximate solutions to difficult
problems by aggregating a large number of random solutions to easier problems.

Like many other elite mathematicians in the 1940s, Ulamwas working for the war
effort, in his case theManhattan Project in Los Alamos. Ulam’s idea was quickly
adopted by others in the project, notably John von Neumann, for modeling the
behavior of particles released by subatomic processes. Enormous strides in com-
puting power after the war allowed researchers to run amuch larger number of
trials than would have been possible by hand and provided access to efficient
pseudo-random number generation. In the intervening decades, thesemethods
have been applied to problems in physics, chemistry, and computer science as
well as in purely mathematical settings.

2 .2 DEFINING A MARKOV CHAIN

AMarkov chain is a process thatmoves from state to state in a randomizedway in a
state space. Its defining property is that the probability of moving to each state at a
certain time is determined by your current position. One example is the children’s
game Snakes and Ladders, where the probability of landing on a particular square
on your turn is completely determined by your current square. This kind of process
is also the secret sauce in Google’s original PageRank algorithm, which works by
estimating the importance of a website as the probability that a web-surfer would
land there after following totally random links for a long time.

Let’s build three simple examples to start to understand this. All of themwill be
randomwalks on a space with 27 states consisting of the letters of the alphabet
plus a space. (For graph representations of these chains, see Figure 2.)

1. Alphabet Path: Only allowedmoves are from a letter to the ones before or
after it in the alphabet, with SPACE after Z. So from A, your next move is
definitely B, but fromG, you couldmove to either F or H with equal chances.

2. Alphabet Cycle: Same, but now SPACE is also connected to A. Now every
state has two “neighbors” and picks one at random.
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3. KeyboardWalk: starting with any letter, you are equally likely tomove to any
of its physical neighbors on a standard (QWERTY-style) keyboard. So from
H you can transition to any of Y,G,B,N,J, or U with a probability of 1/6 each,
while fromQ you are equally likely to transition to A orW.

17 .2 MONTE CARLO GEOMETRY

Here is a geometric question that can be tackled with Monte Carlo analysis: What is
the expected distance between two points randomly drawn in a unit cube? Although
this problem has a mathematical formulation∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

√
((x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2d x1d x2d x3d y1d y2d y3

and a mysterious looking exact solution

4+17
p

2−6
p

3+21log(1+p
2)+42log(2+p

3)−7π

105
,

this is a perfect problem for trying out the Monte Carlo method. If we sample pairs of
points with coordinates uniformly random in [0,1], we can report the average. The
first run of 1000 trials gave us about .67122, the second run gave .66921 and the third
gave .65919. A run of 1,000,000 trials gave .66157. These are not so far off from the
theoretical value of .662959... and would continue to improve with longer runs.

Similarly, it may be hard to visualize a ball of radius 1 in five-dimensional space, but it’s
easy to estimate its volume! I’ll just sample n points (x1, x2, x3, x4, x5) by randomizing
their coordinates in [0,1] and see what proportion of them satisfy x2

1+x2
2+x2

3+x2
4+x2

5 ≤ 1.
This is the part of the ball with positive coordinates. Since the coordinates can have
any combination of signs, there are 25 = 32 similar sections of the ball, so I can multiply
the ratio of hits by 32, and voilà! Turns out this volume is about 5.264. It’s integration
without integrals.a

aFun fact! Dimension 5 is the peak volume for the unit ball. The volume decays to zero
faster than exponentially in the dimension n, even though the unit n-ball fits snugly in an
n-cube whose volume grows exponentially. This seems totally unreasonable until you think
about how unlikely it is that x2

1 +·· ·+x2
n ≤ 1 for large n.
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17 .3 TEXT GENERATION

An early application of Markov chains was in the analysis of text passages, trying
to predict the next letter that would appear in a book written by a given author.a

Symbols in text are not distributed uniformly: for instance, q is almost always followed
by u, periods are followed by spaces, and the letter e is most commonly found at
the end of a word. Given a long passage of text, we can compute how often each
symbol follows each other symbol and use these proportions to generate new text
probabilistically.

This is indeed a Markov chain: the probability for choosing the next letter only depends
on the current letter. Let’s call this the 1DS chain (one-digit sequences). We can
similarly define a 2DS chain that takes into account that Al is likely to be followed
by ad, a 3DS chain that sees that sec is frequently followed by ret or ond, and so
on. The longer the strings you consider, the more the output looks like language, at
least until you try to figure out what it means. The tradeoff is that the size of the
transition matrix grows quickly: if there are n characters in the alphabet, then there
are n2 two-digit sequences, n3 three-digit sequences, and so on.

Below are some examples generated from letter patterns in the story “Aladdin and the
Magic Lamp” from the Arabian Nights.b Each of these is a single sample path of the
Markov chain induced by the letter sequences. The first line is 50 characters chosen
uniformly, for comparison, and 0DS generates letters in proportion to their frequency
in the text.

(uniform) ,Kni;;.RgkY:f;;.?ACKKDFtjaBD-vjaIAezAFO-hOzOe?NAm

(0DS) idaleuiupefeibseauitisavisrogeme,aob,aWtosde

(1DS) y mpo fewathe he m, main, wime touliance handddd

(2DS) If ho rembeautil wind was nearsell ith sins. He don the whimsels hed his the
my mign for atim, but

(3DS) but powerful not half-circle he great the say woman, and carriage, she sup
window." He said feast father; "I am riding that him the laden, while

(4DS) as he cried the palace displeasant stone came to him that would not said:
"Where which was very day carry him a rocs egg, and horseback." Then the might
fetched a napkin, which were hunting in the

There turns out to be a significant amount of interesting structure in this type of
analysis. The transition matrices alone are often enough to distinguish authors from
each other, or poetry from prose (see Figure 1).

aSimilar methods are used for auto–complete functions on smartphones!
bAll three texts cited here are available from Project Gutenberg (https://www.gutenberg.

org/).

https://www.gutenberg.org/
https://www.gutenberg.org/
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Aladdin Alice inWonderland

Sleepy Hollow

Figure 1: Transitionmatrices forAladdin,Alice inWonderland, and SleepyHollow. Each rowand column
corresponds to a pair of letters, and the brightness of thematrix at that point captures the likelihood of
a transition from the first letter to the next in the text.

2 .3 APPROACHING A STEADY STATE

We can visualize the randomwalk on the state space by imagining a person, or an
ant, who is crawling from state to state. If the state space is finite, we can use nodes
to represent the states and draw edges to represent the possible transitions; this
givesusagraph representationof the randomwalk, as inFigure2. If the instructions
of the randomwalk amount to, from any node, choosing from among the incident
edges with equal probability, then we call it a simple randomwalk—our alphabet
path, alphabet cycle, and keyboard walk are all simple in this sense.

Themathematical formalismgets nicer andmore unified if we instead consider the
evolution of a probabilistic position vector. For instance, if the randomwalk on the
keyboard begins at letter Q, then we can record that one step later, its probability
vector has 1/2 weight at W and 1/2 weight at A.
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initial step step
prob. 1 2

Q 1 0 1/4

W 0 1/2 1/8

A 0 1/2 1/8

Z 0 0 1/8

S 0 0 1/4

E 0 0 1/8

In this way, the probabilities keep diffusing through the state space. (At the next
step, nonzero probabilities will expand to X, D, and R.)

Thinking aboutMarkov chains in this probabilisticway allowsus to studyquestions
about long-term behavior. In general, dynamical systems can havemultiple states
that are attractors and others that are repellers. But themagic of Markov chains is
that there exists a unique attractor—everything is drawn to it. That is, for a (suitably
designed) Markov chain, any initial position will converge to a unique steady state.
This steady state is also called a stationary distribution.

If there are finitely many states, say n, then we can formalize this with an n ×n
transitionmatrix M whose (i , j ) entry records the probability of transitioning from
state i to state j in one step. Let us call its transpose P = Mᵀ the iterationmatrix of
the system. We call it this because it has a nice property: for a position vector v , the
matrix product P v records the probability of being at each position one step later
in the process. So if v is your initial position, then P N v is a complete description of
your position at time N .

Figure 2: The top row shows the state space as 27 nodes in a graph, with edges for allowed transitions.
The bottom row shows the transitionmatrices in visual format, allowing you to scan the likelihood of
going from a letter to any other latter in one step for each of the chains.
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17 .4 THE FUNDAMENTAL THEOREM OF MARKOV
CHAINS

We need to define a few properties of Markov chains to state the fundamental theorem
and some surrounding facts. The first adjective we will consider is periodic. The
period of a Markov chain is the greatest common divisor of all cycle lengths (paths
that start and end at the same state). A chain is said to be aperiodic if the period
is one. Looking at our example chains, we can see that the keyboard is aperiodic
(Q–W–Q has length two and Q–W–A–Q has length three, and these have no nontrivial
common divisors), and the alphabet cycle is aperiodic (A–B–A has length two and
the full tour around the alphabet has length 27), but the alphabet path is periodic
because any path starting and ending at the same letter has even length. A common
trick to make a walk aperiodic is to add a small probability of remaining in place. This
is picturesquely called a “lazy” random walk.

Next, a Markov chain is called irreducible if each state can be reached from any other
state in a finite number of steps. All of the examples that we have encountered so far
have this property. A link-following random walk on the internet does not have this
property because some sites have no outgoing links.a Markov chains that are both
aperiodic and irreducible are called ergodic.

A Markov chain is reversible if it satisfies a symmetry condition known as “detailed
balance.” This condition states that in the steady state, the probability of being at
state i and transitioning to state j is equal to the probability of being at state j and
transitioning to state i . In mathematical notation, if w represents the steady state
vector and P the iteration matrix, this condition reads

wi Pi j = w j P j i ∀i , j .

The Aladdin text chain in Sidebar 17.3 is an example of a nonreversible chain, since
the probability of transitioning from l to A is zero, while the string Aladdin itself shows
that the reverse probability is nonzero. Reversible chains have many nice properties
and this symmetry condition means that the steady-state distributions are particularly
easy to analyze.

Finally, a quick note about measuring success. To say how close one probability
distribution is to another, a natural notion is the total variation distance between the
two measures. Given two distribution vectors u and w , the total variation distance
between them is dTV(u, w) = 1

2
∑

i |ui −wi |. This is just adding up the differences in
weight over each state in the state space, normalized so that the distance between
any two measures is always between zero and one.

Fundamental Theorem ofMarkov Chains:

1. Any ergodic Markov chain has a unique stationary distribution. That is, if the
iteration matrix is P , then there exists a unique probability vector w (entries
summing to 1) such that P w = w .

2. For any probability vector v , its iterates converge to w . That is, dTV(P N v, w) →
0 as N →∞.

3. Every Markov chain can be represented by a random walk on a graph—possibly
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a directed graph with weights on the edges. For the case of simple random walk
on a finite graph, the stationary probability of being at position i is proportional
to the degree of vertex i . That is, where di is the number of edges leading to
vertex i and D =∑

i di , the steady state vector has coordinates wi = di/D.

This explains why the steady-state probability is uniform for the alphabet cycle, while
the endpoint vertices have half the long-term weight of the others in the alphabet path
walk (Figure 2). Note also that it easily follows from the Fundamental Theorem that
all simple random walks on undirected graphs (where from each vertex you choose an
incident edge with equal probability) are reversible.

Building on this theory, the Markov chain Central Limit Theorem and its various
refinements guarantee that given any real-valued function F on our state space, we
can estimate its statistics over the state space as a whole by simply collecting samples
from a random walk and averaging the values of F on the states in the sample.

This is the sense in which the Markov chain theory is so well suited to redistricting.
For years, it has been a burning question to find the normal range of metrics in
nongerrymandered plans. If we can find a Markov chain with a suitable steady state,
we can use samples to estimate these baselines.

The amount of time that it takes to be guaranteed that P N v is within a prescribed
(total variation) distance of the steady-state w is called the mixing time of the Markov
chain. There is very beautiful theory when it comes to mixing times, but it is almost
never possible to bound mixing times in scientific applications.

To read more, see Levin et al., Aldous and Fill, and Geyer [2, 3, 4].

aTomake a walk on a finite state space irreducible, one hack is to add a small probability
of teleporting anywhere at each step. PageRankworks this way.

We can use the three simple chains we introduced in the previous section (the
path, cycle, and keyboard walks). Instead of considering a particular sequence of
visits to individual states, we instead use the equation above to compute the exact
probabilities of arriving at each of the other states. We find that even though the
three chains are defined on the same state space, their steady states are different!
In the keyboard walk, some states are weighted three times as high as others in the
long term, while in the alphabet cycle all states are equally weighted.

2 .4 BASELINES WITH MARKOV CHAINS

We can test out themain theorem by seeing howwell theMarkov chain approxi-
mates a numerical “summary score” of the state space. We’ll look at two functions
from the state space to the real numbers (also called functionals).

• Ascending: Score is based on position in alphabet.

A 7→ 1, B 7→ 2, . . . , Z 7→ 26, SPACE 7→ 27
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• Vowel-weighted: Assign 1 to each consonant, 100 to each vowel, and 50 to Y.

Table 17.1 below compares the theoretical expected values to the estimates ob-
tained from eachMarkov chain with increasing sample length. All of these runs do
a decent job,1 but we can observe that some seem to converge faster than others,
and the rate can depend on the score we choose!

Walk Score Experimental Exact
2k steps 10k steps 50k steps 100k steps

Path Ascending 15.75 (12.5%) 13.99 (0.07%) 14.04 (0.3%) 14.07 (0.5%) 14
Vowel-Weighted 18.69 (6.6%) 19.70 (1.6%) 19.29 (3.6%) 20.03 (0.07%) 20.02

Cycle Ascending 14.5 (3.5%) 14.32 (2.3%) 14.1 (0.7%) 13.88 (0.8%) 14
Vowel-Weighted 21.36 (1.0%) 21.76 (2.9%) 20.97 (0.8%) 21.22 (0.4%) 21.15

Keyboard Ascending 13.12 (1.2%) 13.34 (0.4%) 13.32 (0.2%) 13.30 (0.05%) 13.292
Vowel-Weighted 21.02 (9.9%) 19.36 (1.2%) 19.53 (2.1%) 18.91 (1.2%) 19.13

Table 17.1: Experimental comparison for estimating scores. These are independent single runs begin-
ning at the letter A and collecting every score visited by the randomwalker. Percent error in parentheses.

It is very rare to have rigorous control of the run design needed to get an estimator
with provable guarantees. Instead, scientific applications typically use heuristic
methods to determine whether or not an estimation has converged.2

This example also motivates the use of a common strategy called burning and
subsampling. Frequently, practitioners will set a parameter b called “burn-in
time” and a second value s called a “sub-sampling parameter.” Then, instead of
collecting every observed state, a sampling ensemble will be created by collecting
states visited at time b,b + s,b + 2s, and so on. If s is roughly the mixing time of
the chain, then these samples will be approximately independent draws from the
stationary distribution.3 For chains where neighbors tend to have similar scores,
like the ascending chain, this helps to counter the auto-correlation, or degree of
similarity from one step to the next, whichmakes a full sample change its average
valuemore slowly.

We also see a hugely important fact illustrated here that is worth emphasizing:
the ground truth itself—what is the average value of the score over the whole
universe of possibilities?—depends not only on the state space but also on the
probability distribution, because it is aweighted average. So, if we’re working with
the stationary distribution for the keyboard walk, D is weighted three times as
much as Q. This will be important below when we turn to redistricting.

1If you are following the details, the path walk is periodic. Probabilities proportional to degree is one
stationary distribution. Exercise: find them all!

2A primary example, sometimes called themulti-start heuristic, is to start the chain from different
initial states and check that the sample distributions agree. Of course, this can’t ensure that you’re
getting the right answer, but if yourmulti-start experiment fails, then you can be sure that you’re not
running long enough.

3The use of burn-in in particular is somewhat controversial; see for instance Geyer [4].
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2 .5 TARGETING A DISTRIBUTION

So far, our examples beginwith aprocess governedby some transitionprobabilities,
then run until they approach stationarity. But in most MCMC applications, we
start with a specific distribution we are trying to sample from, then create an
irreducible, aperiodic Markov chain designed to target it. The same property that
made problems tractable for Monte Carlo analysis—the relative ease of evaluating
the properties of a sample rather than the whole—also turns out to be useful for
drawing from a target distribution. We can design an appropriateMarkov chain
knowing only local comparisons for the target.

This was the key idea that was exploited byMetropolis and coauthors in 1953 [5].
As with early Monte Carlo techniques, the original application was to statistical
mechanics of atomic particles. This ideawas further developed byHastings [6] and
others and has come to be one of the most fundamental computational tools in all
of computer science and statistics. In 2000, the IEEE describedMetropolis-style
MCMC sampling as one of the top 10most important algorithms of the twentieth
century [7].

One situation that calls for this kind of maneuver is when we have a score that
makes us regard some states as “better” than others, and we want to prescribe a
distribution that prioritizes or up-weights the higher-scoring states. This turns out
to be a common situation in physics and Bayesian statistics. We essentially use the
score to start with oneMarkov chain, then design a cleverly weighted coin and use
a coin flip to accept or reject each proposedmove. When the weighting is just so, it
pulls the first Markov chain away from its own steady state and toward the desired
distribution.
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Proposal distribution After 10,000 accepted After 100,000 accepted

Figure 3: In this run, the proposals are generated according to the keyboard walk, but re-weighted in
theMetropolis style to target the ascending distribution. TheMetropolis rule is successfully pulling the
distribution away from its stationary tendency (left) and toward the ascending shape (right).

This is well illustrated by Figure 3. On its own, the keyboard walk would approach
the distribution on the left, but instead it is converging toward the ascending shape.
In order to achieve this, many proposed transitions away from the high-scoring
letters are rejected, while lower-scoring letters aremore readily left behind. Our
fidelity to the target distribution improves with longer runs.
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17 .5 METROPOLIS–HASTINGS

Begin with a score function s on our state space Ω, so that s :Ω→R. For instance,
the ascending score function has s(A) = 1, s(B) = 2, etc. We want to sample from
the distribution where the states are weighted in proportion to their scores. For
example, if we target the ascending scores, then the letter J (score 10) should be
twice as likely as E (score 5). For any state y ∈ Ω, we should therefore assign it
probability P(y) = s(y)∑

x∈Ω s(x) . When Ω is too large to construct entirely, we won’t be
able to compute this denominator. However, notice that we can compute ratios of
probabilities, since the denominators cancel:

P(z)

P(y)
= s(z)

s(y)
.

And that’s good enough for the re-weighting we need.

We perform the Metropolis–Hastings procedure by beginning with a Markov chain to
propose steps, and then using the score function to decide whether to accept them.
We use the ratio of the new score to the old score to decide. It is this possibility of
remaining in place that transforms the stationary distribution to our desired values.

More formally, we follow this sequence of steps:

1. From an initial state y, generate a proposed state z according to the Markov
chain with transition matrix M ;

2. Accept z with probability α= min

(
1,

s(z)

s(y)

Mz y

My z

)
;

3. The next state is z if it was accepted and remains y if not. Repeat.

As you can see, a proposed move to z is likely to be accepted if s(z) > s(y), and unlikely
if s(z) is significantly lower. This new Markov chain—which has all the possible
transitions of the M chain but re-weighted—is ergodic and reversible with steady-state
distribution proportional to s.

2 .6 TEMPERATURE VARIATION: EXPLORE AND
EXPLOIT

In physics, we often have systems that can bemodeled with simple (but very large)
state spaces, where wewant to explore high-energy and low-energy configurations.
For instance we can try to understandmagnetic systems, or the chemical structure
of glass. Randomizedmodels like the onewe describe here have been so successful
that they’ve birthed a whole field, called statistical physics.

We’ll use the classic Ising model to illustrate, with math details set aside to the
sidebar. We’ll describe system configurations as states σ (appearing as red/blue
patterns in our pictures), then define a score s(σ) called an “energy” which distin-
guishes between chaotic and clustered states.

Let’s imagine that we want a random sample of clustered states—those where red
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cells are likely to have other red cells as their neighbors and blue cells are likely to
have other blues. And suppose we’ve set up the energy-based score s(σ) to reward
thiswith a higher score for clustered states. Howdowe sample? For starters, we can
use a weightedMetropolis run as described in the last section to try to up-weight
states based on s. But this won’t work well off the shelf. TheMarkov chain can get
stuck inmeta-stable configurations (local optima) that are well-separated from
other configurations with similar energy scores, or may even reach global optima
that are difficult to escape, which makes it hard to see the diversity of clustered
configurations.

Lowweighting
of score

Initially chaotic

High weighting
of score

Initially chaotic

High weighting
of score

Initially clustered

Figure 4: Exploring clustered configurations in a grid with three runs, each at fixed temperature (which
controls how the clustering score isweightedduring the run). Snapshots are 250,000 steps apart, reading
from left to right. These are not efficient strategies for producing a diversity of clustered states.

We see some of the problems in Figure 4. If we run without weighting by the score
(first run), clustered configurations are so unlikely that we would not expect to
find them at random. But if we run with a high preference for clustering (second
and third runs), we will have trouble finding diversity. Notice in particular that the
all-red and the all-blue state are both globally optimal for clustering (all neighbors
have matching colors), but it would take a truly enormous number of unlikely
steps to travel from one to the other while penalizing neighbor differences at every
proposed shift. So the second run is stuck at a global optimum, while the third one
is stuck in ameta-stable local optimum.
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17 .6 IS ING MODEL: SPECS

The Ising model of ferromagnetism is a mathematical abstraction of a physical system:
a network of ‘sites,’ each of which can be in one of two ‘spin states,’ usually represented
with labels in {±1}, corresponding to the red and blue colors in the figures here. This
is one of the most commonly studied models in statistical physics and also one of the
big success stories in the field of MCMC sampling.

Most commonly, the sites are arranged in an n×n grid; we will denote the assignment
of a sign to each node by σ so that σi is the spin of node i . Then the 2n2

possible
configurations σ make up the states in the state space we will study. Viewing the spin
states as magnetic poles that interact with their neighboring sites, we can define an
expression called a Hamiltonian that represents the total energy of the configuration
of spins. In a simple setup this might be written

H(σ) =−J
∑
i∼ j

σiσ j ,

where i ∼ j means that the nodes are adjacent in the grid and J is a term for the
interaction strength, here assumed to be constant over the grid. This is designed to
distinguish between various kinds of spatial arrangement: if the σi are random, the
sum will have many positive and many negative terms and will often cancel down to
near zero. If the +1 and the −1 nodes are highly clustered, most terms in the sum will
be +1; if they are in a checkerboard pattern the terms will be −1.

The goal is then to sample from a probability distribution over the states given by
setting Pβ(σ) proportional to e−β·H(σ), where β≥ 0 is a parameter called the inverse
temperature. For high values of β (low temperature), this will put a lot of weight on
the configurations σ with a large negative H(σ), which corresponds to clustering when
J > 0; on the other hand, for β near zero (high temperature), the probability will be
near-uniform.The sum Z (β) =∑

σ e−β·H(σ) is sometimes called the partition function,
which then allows us to write Pβ(σ) = e−β·H(σ)

Z (β) .

In his Ph.D. thesis, Ernst Ising solved the one-dimensional model (i.e., on a path
graph) exactly, showing that correlations between spins decay exponentially with the
distance between the sites. In higher dimensions, we get a more interesting model,
finding a sharp phase transition as the inverse temperature value β varies. That is, at
a critical value of β, we observe a sudden shift between complex, disorganized states
for small β and structured, clustered states for large β. Exact solutions are not known
for these cases but this is a perfect setting for exploring with MCMC.

Directly sampling from Pβ is challenging for high β, despite the fact that it is easy
at β= 0 by assigning the spin at each site uniformly. Instead, we will start with an
arbitrary assignment and use MCMC to construct samples from the desired distribution.
To move between states, we define transitions where at each step we propose to flip
the assignment of a single, randomly chosen node to the opposite sign—this is called
Glauber dynamics. Following the Metropolis–Hastings procedure with fixed β, we
would accept a proposed transition from σ to τ with probability equal to e−β(H(τ)−H(σ)).
The examples in this section illustrate that we get superior results with temperature
variation than by running either hot (here, at inverse temperature β = .1) or cool
(β= 3) alone.
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A technique called simulated annealing was developed to deal with this sort of
phenomenon—its name is motivated by the physical process of heating and re-
cooling metal to change its structure. Following this analogy, we will introduce
a temperature parameter such that steps aremore wild and random at high tem-
perature, then settle into aggressive score optimization at low temperature. In the
cooling regime, we paymore attention to the relative differences between plans,
demanding that almost every accepted statemust have a higher score than the pre-
vious one. Sometimes this distinction in behavior is referred to as “explore/exploit”
since running hot lets us explore the state space more freely, while cooling then
forces us to stay in a smaller neighborhood of the best thing we’ve found recently,
thereby exploiting the high score locally.

The temperature variation over time, also called the annealing schedule, is set
before the run, prescribing cycles of heating and cooling. Let’s see an example of
annealing in action, again with the goal of viewing a diversity of clustered states.
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Steps Steps Step 0

50,000 100,000 150,000 200,000

250,000 300,000 350,000 400,000

Figure 5: The annealing schedule is shown at the top, with timestamps marked every 50,000 steps
and corresponding snapshots below. Each cycle of heating and cooling lets us reset with uniform
sampling, then settle into a different clustered configuration by increasingly weighting the score as the
temperature drops.

Figure 5 shows annealing performing exactly as advertised. Note that we were able
to move between qualitatively distinct configurations in a relatively small number
of steps compared to the fixed-temperature runs above.
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However, as withmany of themethods discussed in this chapter, setting an anneal-
ing schedule requires choices and does not comewith a canonical strategy. Wewill
return to this idea in the redistricting application below.

3 MCMC FOR REDISTRICTING

We now turn our attention to the application of MCMCmethods for political redis-
tricting. First, we describe a formalization of the district-drawing problem in the
language of graph theory, and then discuss possible formalizations of rules and
laws around redistricting. We will introduce several styles of MCMC sampling and
survey the state of the art.

3 .1 GRAPH PARTITIONS

Althoughmany people think of gerrymandering in terms of lines or curvy bound-
aries drawn on a map, political redistricting is naturally modeled as a discrete
problemwhere a collection of separate units, like census blocks or voting precincts,
are partitioned into districts. This fits the real-world problem, as the Census Bu-
reau reports population and demographic data at the level of census blocks and
most states report election results aggregated at the level of precincts. In virtually
all cases, you can regard a plan as being built out of census blocks, in the sense
that it does not split them.4 And inmany states (like Massachusetts, Louisiana, or
Minnesota), state or local redistricting plans are built out of whole precincts. This
viewpoint allows us to study redistricting as a discrete problem, using theMCMC
tools introduced above.

The object to partition will be a dual graph of the chosen units covering the state,
which represents each individual unit with a node and places an edge between two
nodes if they are adjacent.5 For instance, Figure 6 shows the counties of Arkansas
and the corresponding dual graph. There are 75 counties in Arkansas; on the other
hand, there are 186,211 census blocks. In reality, Arkansas’s four Congressional
districts are built of these smaller pieces. This gives a sense of the gigantic scale of
the computational problem and why sampling-based procedures have become so
important in this area.

As we’ve seen, the first step toward defining aMarkov chain is to identify the state
space. Once we’ve fixed a dual graph, we’ll let the states in our state space be
districtingplans, i.e., partitions of thedual graph. By apartition,wemeanadivision
of the vertices into groups, which in this case are the districts of the plan. So the
partition of Arkansas counties in the last picture of Figure 6 is one state in a space
consisting of many trillions of possible plans. Our randomwalks will wander from
one plan to the next. In the next section, we will discuss how to decide whether a
partition constitutes a valid plan.

4In fact, the official description of the districts available from the Census Bureau is given by a block
assignment file, a table mapping the individual census blocks to their assigned districts.

5You have tomake a decision about whether to include corner adjacencies. And when you’re doing
this on real data, you also have tomake decisions aboutwhat counts as being adjacent acrosswater—for
instance, what are islands next to?
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Figure 6: The 75 counties of Arkansas (left), the corresponding dual graph (center), and a districting
plan (right).

3 .2 DEFINING VALID PLANS

Clearly, many graph partitions do not correspond to reasonable districting plans.
Unfortunately, there are far more poorly behaved partitions than reasonable ones.
In order to address this issue, we need to enforce some constraints that cut down
our state space. The purpose of this section is not to describe the perfect state
space for all redistricting problems—no such thing exists!—but rather to highlight
the decisions that must bemade so that theMarkov chain samples are producing
reasonable plans for comparisons.

We begin by discussing some commonly enforced traditional districting principles.
(See Sidebar 0.2.) We’ll touch on contiguity, population balance, compactness,
county splitting, communities of interest (COI), and the Voting Rights Act (VRA).

To get an algorithm to take an idea into account, you must operationalize it, or
render it in a formulation that can be handled by a computer. This is one of the
steps that is easy to take for granted whenmaking amathematical model, but the
devil is often in these details. Let’s just give some examples of operationalizing the
rules, which we can illustrate on our Arkansas plan from above.

• Contiguity: the pieces of the partition (the districts) are connected subgraphs.

• Population balance: for some threshold ε, each district has a total population
between (1−ε) and (1+ε) times the ideal size. (For instance if we set ε= .05,
then the top to bottom deviation is nomore than 10% of ideal.)

• Compactness: the number of edges that were cut to break up the graph into
pieces is nomore than a threshold.

• County splitting: no more than a threshold number of counties is split be-
tweenmultiple districts.

For most of these, our Arkansas plan from Figure 6 sails past the validity check: the
districts are connected, the number of cut edges is just 44 (which is pretty good
for this particular dual graph), and the number of split counties is zero (since the
building blocks are counties).6 But the population balance is not great: since it’s

6Unfortunately, this is not always compatible with prioritizing the preservation of city boundaries,
because plenty of cities, including in Arkansas, belong tomore than one county.
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made out of relatively large pieces (counties), each district is within 10% of ideal
but not close to usual Congressional standards of balance.

The COI and VRA criteria are quite a bit harder to handle. Onemain obstacle to
operationalizing COI is that almost no states have a concrete process for official
recognition of qualifying communities. If you had those, with shapefiles that tell
you their boundaries, then you could handle them with splitting rules like for
counties or cities. But another fundamental obstacle is that it’s not even clear if
most places would prefer to handle COI quantitatively or qualitatively in the first
place. (See Chapter 12.)

As for the VRA, the law around its invocation is so complex that it’s fairly daunting
to incorporate into amathematical model. In particular, it is a widespreadmisun-
derstanding that the VRA requires a certain number of majority-minority districts;
instead, it calls for the creation of districts in whichminority communities have
an opportunity to elect candidates of choice. This can often be roughly gauged by
the share of population that belongs to aminority group, but this is not enough
to ensure compliance. Nonetheless, several approaches are possible. One thing
to keep inmind is that Markov chains will collect plans whose principal intended
use is for comparison, not for enactment. If you have a quantitative approach to
estimating whether a district will be effective, then a reasonable strategy would
be to use the number of effective districts as a VRA validity proxy. We’ll discuss an
approach to gauging effective districts below in Section 3.4.

3 .3 FL IP CHAINS FOR REDISTRICTING

In our introduction toMarkov chains using the letters of the alphabet, we specified
the chain by defining the transition probabilities between each pair of letters.
Unfortunately, there are far toomany partitions of a state-sized dual graph for us
to attempt to compute or store all of the necessary probabilities. Instead, we can
specify aMarkov chain by describing a set of elementary moves that we can apply
to a given state in order to generate proposed neighbors.

One theme we will encounter is that even when it is easy to describe a move, it
is costly to computations that depend on all the neighbors and the neighbors’
neighbors. For instance, let’s do a very natural move: start with a plan (say the
four-district Arkansas plan in Figure 6), pick a random node, and try to reassign
that node a randomcolor. For each of the 75 nodes, there are three new colors to try,
so that’s 75 ·3 possibilities. Most of the proposed changes will break contiguity. In
an 18-district Congressional plan for Pennsylvania, built out of precincts, there are
9000·17naiveneighbors. Whatwe’ll see is that it’s easier to tryamoveand thencheck
validity rather than pre-computing the valid neighbors from each position and
choosing among them. Trying and sometimes failing is called rejection sampling,
and it can be quite efficient as long as the check is quick and the rejection rate is
not too high.
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DEFINING A FLIP

The verymost natural thing to do, especially considering the great successes in the
Isingmodel, is to flip a single node at a time. We’ll call this a flipwalk. This type of
proposal has some computational advantages, in that it is easy to iteratively update
the computations of score functions and to keep track of the set of nodes that can
potentially be changed at each step while preserving contiguity. Figure 7 shows an
example of this proposal, where one of the nodes on the boundary between two
districts changes its assignment.7

Figure 7: The basic flip step: one unit flips from one district to another.

Even this simple-sounding flip proposal can be implemented in subtly different
ways. One option would be to select an edge whose endpoints are in different
districts and randomly change the assignment of one endpoint (also at random)
tomatch the other. Alternatively, a boundary node could be chosen and its assign-
ment changed to match one of its neighbors at random. Another versionmight
instead keep track of all of the (node, district) pairs that could be changed to remain
contiguous and sample uniformly from that set. Exercise for the reader: confirm
that these proposals do not have the same steady-state distribution!

Depending on the formulation of the state space, implementations of the flip
proposal can suffer from pathological behavior without careful tuning [8] and in
particular have a preference for non-compact plans. Additionally, as only a single
node changes assignment at each step, Markov chains using this proposal can
require an enormous number of steps to construct approximately uncorrelated
samples. In Najt et al. [9], explicit families of graphs were constructed where this
proposal exhibits slowmixing. This does notmean that the proposal iswrong for all
applications, simply that caremustbe taken inchoosing the samplingmethodology
and the parameters of the walk to generate useful samples.

TARGETING AND ACCELERATING FLIP CHAINS

Because simply running a flip chain on its own would take astronomically long to
converge, and would draw from an undesirable distribution, it seems very natural

7One subtlety: if we re-assign a boundary node, we can be sure that the new district that node joins
is connected, but it may disconnect its old district by its removal. This makes it slightly trickier to count
the neighboring partitions.
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to use some of the techniques from the last section to target a different distribution
of your choice, and to accelerate the progress.

Atfirst, itmay seemreasonable to target theuniformdistribution, equallyweighting
all plans that pass validity checks. But there are major reasons not to do this.
First, this distribution is evenmore undesirable than one that flip began with, in
terms of being overpowered by the least compact plans. Second, the complexity
obstructions that suggest very slow convergence for flip chains also apply to the
uniform distribution.8

Instead, inspired once again by the physics examples, we can target a distribution
that is proportional to some score of quality.
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Figure 8: A success for simulated annealing: we sample contiguous two-district plans for a 20×20 grid
using a flip walk, with a score s(P ) that combines population balance and compactness. The annealing
schedule is reflected in the energy trace shown at the top, with timestampsmarked every 50,000 steps
and corresponding snapshots below. The high-energy states look “fractal,” but this level of cooling is
successful at recovering short boundaries. Even better, we are sometimes able to traverse from one side
of the state space to the other, moving from the vertical split to the horizontal split.

Choosing an appropriate score function for plans, like defining the state space
and selecting a proposal distribution, is not a problemwith a definitively correct
answer. We’ve already seen that operationalizing the criteria is slippery and subtle.

8Some authors, like Fifield et al. [10], first collect a samplewith onemethod and then try to re-weight
it after the fact to approximate the uniform distribution. This does not circumvent the complexity
obstructions and is likely instead to give poor summary statistics.
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Tomakematters worse, we will now need to combine all of those elements into a
single numerical value to serve as the “energy function,” summarizing all of the
relevant properties of a given plan. This is usually done by a linear combination of
severalmetrics. But choosing the coefficients requires not only deciding on relative
importance, but also contending with different units of measurement. Howmuch
additional leeway should we permit a plan in population balance in order to make
it more compact? A responsiblemodeler will not only justify these choices, but will
also offer a robustness analysis showing that the answers produced by themodel
are not very sensitive to these decisions.

Let’s test out thephysics approach in a simple districting application that partitions
graphs into k = 2 parts. As an example of an energy function we will consider both
population balance and compactness. Given a partition P = (A,B) into districts
A and B , we set σpop(P ) = ∣∣|A|− |B |∣∣ to be the difference in the sizes of the districts.
(In a grid, the size of a district is just the number of nodes; in a dual graph, it is
the population.) Sampling proportional to e−σpop(P ) means that a plan with exactly
balanced populations should be drawn with approximately e10 ≈ 22,026 times the
chance as a plan where one district has 10more nodes than the other. Next, we’ll
use the number of cut edges as a compactness proxy. Given a partition P = (A,B)
we set σcut(P ) to be the number of cut edges and then can combine the scores into
the score function

s(P ) = e−
(
σpop(P )+σcut(P )

)
.

0 20,000 40,000 60,000 80,000

100,000 200,000 300,000 400,000 500,000

Figure 9: On the 100×100 grid, it is much less obvious how to design a successful annealing cycle. Even
after heating and cooling, the boundary assignments have barely changed, and further coolingmay
not succeed in a reasonable time. A different energy functionmight be needed.

This example highlights some of the difficulties in making principled decisions
about this type of sampling. In a real-world redistricting scenario, designing useful
score functions is not a simple task.

Next, having selected a distribution that we would like to converge to, we are left
with the problem of how tomake sure that we actually get there, overcoming any
bottlenecks in the state space. So it is natural to try temperature variations to
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Figure 10: Kentucky’s 3,285 block groups tell a similar story to the large grid in Figure 9. This time the
cooling has nearly succeeded in returning to a plan as compact as the original, but we can see that
annealing has failed to effect amajor change. The boundary assignments are still stubbornly persistent.

achieve diversity and accelerate convergence.

Temperature strategies for redistricting flip chains turn out to encounter major
problems that were not present in themotivating examples from statistical physics.
Like before, the space of plans is huge. But this time, unlike the physics examples,
we will need to get lucky enough to select a huge number of changes in a particular
order to avoid breaking contiguity—and this is true at every temperature. Second,
since the flip procedure itself inclines toward a distribution that is highly noncom-
pact, any compactness preference we implement will be fighting directly against
the tendencies of the proposal distribution. Finally, adding cutoff constraints to
limit the noncompactness or the population deviation can disconnect the state
space entirely: if the limits are too tight, it is easy to construct examples of partitions
that cannot be reached from each other using this procedure.

Figures 8, 9, and 10 show annealing runs on a small grid, a larger grid, and the
block groups of Kentucky. (For more extensive examples, see DeFord et al. and
Najt et al. [8, 9].) Naive annealing was quite successful on the 20× 20, but the
problems described above began to have real bite once the number of units got to
the thousands. One lesson to draw is that it is dangerous to validate techniques on
small examples only, sincemuch of the difficulty only kicks in at scale.

CASE STUDY: FL IP WALKS IN NORTH CAROLINA

To see how all these techniques can be combined, let’s look at the work of Duke
mathematician JonathanMattingly andhis team, theQuantifyingGerrymandering
Group. They participated in federal and state litigation in North Carolina as well as
providingmodel analysis on other states such asWisconsin.

Both federal and state courts have found their methodology to be persuasive and
it was part of the basis of the invalidation by the state Supreme Court of the NC
legislative plans. It formed a fundamental part of the evidence before the U.S.
Supreme Court in Rucho v. Common Cause (2019). Here we focus on themethod-
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ology as presented in Herschlag et al. [11], which analyzed Congressional districts
and parallels Mattingly’s expert report in that case.

The dual graph was constructed from 2692 Census Voting Districts (VTDs), which
approximate the precincts in the state. The score function has terms that relate
to the North-Carolina-specific districting criteria. In particular, NC has a very
strong rule requiring the preservation of counties, and it also has a significant Black
population, triggering VRA scrutiny for Congressional districts.

The score terms are:

• σpop =
√∑

i (pi − I )2/I , where I is the ideal population of a district and pi is
the population of district i . This is zero if every district is exactly the ideal
size.

• σcompact =∑
i P 2

i /Ai , where Ai and Pi are the area and perimeter of district i
respectively. This is minimized when the districts are nearly round, which
would give an ideal value of 4π≈ 12.6 for any particular district.

• σcounty = f (C2)+ M · f (C3), where C2 is the set of counties belonging to two
districts andC3 is the set of counties belonging to three ormore districts, and
f is a function rigged to report 0 if and only if the set is empty. The authors
say that M is a large constant but do not report its value.9

• σVRA =p
min(0,44.48−B1)+p

min(0,36.2−B2), where B1 and B2 are the highest
and second-highest percentages of Black population in any district. This
score is zero if and only if B1 ≥ 44.48 and B2 ≥ 36.2, which are values obtained
from an existingmap that was approved by a court.10

Putting it all together, they attempt to sample proportional to the score function

s = e−β·
(
3000 σpop +2.5 σcompact + .4 σcounty +800 σVRA

)
.

Here we start to see the dizzying array of choices that go into an analysis like this.
Why is the population score weighted 1200 times as heavily as the compactness
score and 7500 times as heavily as the county score? Let’s continue to describe the
setup and hold that question for a discussion of the robustness of the findings.

Proposal generation. Select a cut edge uniformly; change the assignment of one
of its endpoints to match the other with probability 1

2 .
9Suppose county i is in two districts and it has si share of its geographical units in the district with

the largest share. If it is in three or more districts, let si be its share of units in the two districts with
the largest share. Then, Mattingly’s function is f (C ) = |C | ·∑C

√
1− si . Note that f (C2) ≤ |C2|2 ·

p
1/2 and

f (C3) ≤ |C3|2 ·
p

1/3, with slowly decaying penalties for cutting off smaller pieces. This is related to an
entropy score, but with a number of ad hoc customizations. See Chapter 14 for a discussion of how to
use entropy tomeasure county splitting.
10To be clear, this is a massive shortcut to the VRA. There is no basis in law for requiring maps to

retain the demographic percentages of an existingmap. It may nonetheless be passable for a court if
the ensemble is used for comparisons only, and regarded as containing plans that took the VRA into
account rather than plans that are certified compliant.
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Acceptance probability. Automatically reject discontiguous proposals. Accept
contiguous proposals with theMetropolis probability associated with the score s.

Annealing schedule. Initialize temperature parameter β at 0 for the first 40,000
steps, then gradually increase toβ= 1 over the next 60,000 steps. Take an additional
20,000 steps with β= 1 and then add the final map to the ensemble. This means
that a total of 120,000 flips have been proposed betweenmaps in the ensemble.

Winnowing. Remove all plans with population deviation greater than 1%, com-
pactness score of any district worse than 60, any county split four or more ways,
or African-American population share falling below B1 = 40 or B2 = 33.5. In their
experiment, about one-sixth of the generated plans survived the winnowing step.

Using all of these settings, they generated an ensemble of 24,518 North Carolina
districting plansmade out of VTDs. Then they compared the distribution of par-
tisan statistics over the ensemble to the statistics observed in the enacted plans
from 2012 and 2016, using various recent elections for the voting baseline.

They found that the enacted plans display extreme behavior favoring Republicans,
whether measured with partisan bias, efficiency gap, the number of seats won by
each party, or a variety of newmetrics they devise. (See Chapter 2 for an overview
of partisanmetrics.) By contrast, there is a plan proposed by a bipartisan panel of
retired judges, built tomodel the work of an independent commission. The judges’
plan performs well in line with their ensemble of neutrally generated alternatives.
(See Figure 12 for some of the Duke output, together with a replication study.)

To account for the dozens of detailed choices that went into this approach, the
authors offer several convergence heuristics and sensitivity analyses to argue that
the analysis is robust to the arbitrary choices in its setup. For instance, they tried
exchanging their Polsby-Popper compactness score for an alternative dispersion-
based compactness score or changing the coefficients in the score function and
found that their bottom-line results were qualitatively similar. Any approach with
somany choices to makemust contend with worries about gameability, so a suite
of strong robustness checks of this kind is needed to raise our confidence in the
reliability and replicability of this kind of analysis.11

3 .4 RECOMBINATION

We’ve seen that flip-based walks can be quite powerful in the redistricting applica-
tion, but that they are subtle tomanage in terms of the centrality of user-chosen
specifications. Our research group, the Metric Geometry and Gerrymandering
Group (MGGG), based at Tufts andMIT, has spent several years refining amarkedly
different approach, surveyed in DeFord et al. [8]. It revolves around a fundamental
graph theory concept called a spanning tree.

11The Duke team did not publicly share the code used in this study and report, but a second-
generationpackage is available if you’d like to try yourhandat sensitivity analysis. You canfindmaterials
in Greg Herschlag’s git repo at https://git.math.duke.edu/gitlab/gjh.

https://git.math.duke.edu/gitlab/gjh
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17 .7 “CAREFUL CRAFTING” : A LOCAL TEST

A completely different—and very elegant—use of Markov chains has also been devel-
oped for redistricting applications, proposed by Chikina–Frieze–Pegden (CFP) [12].
This approach was applied by Pegden (and later by Duchin) in the Pennsylvania
Supreme Court litigation over the Congressional map. The theory is developed further
in Chikina et al. [13], and earlier work revolving around the same ideas can be found
in Besag and Clifford [14].

Suppose your state space is Ω and you fix any functional f :Ω→ R, any reversible
Markov chain, and any value 0 < ε< 1. Now suppose that a sequence of consecutive
states visited by the chain is

P0,P1,P2, . . . ,PN .

Then we can consider the set of scores { f (Pi )} observed over that sample. The theorem
states that the probability that f (P0) is in the most extreme ε fraction of the { f (Pi )}
is at most

p
2ε. Notice that this result does not require any statement about the

convergence of the chain, only that the proposal is reversible. It applies to very short
runs as well as long runs, but provides a weaker conclusion. And it also does not
require ergodicity—the state space need not be connected, and the theorem applies
just as much when the sample is collected from a small connected component, but
again with a possibly weaker conclusion.

This suggests a rigorous gerrymandering test, which is very powerful because it does
not require a demonstration of ergodicity or convergence. Start a Markov chain at a
given plan and let it run for a large number of steps. If the initial state scores worse
than the vast bulk of observed variants, then you can be extremely confident that it
was not chosen from the stationary distribution!

For the Pennsylvania example described in the CFP paper, the dual graph is made
out of the approximately 9000 precincts in Pennsylvania and the Markov chain is
a “lazy” flip run designed to have a uniform steady state. In Pegden’s report, he
didn’t use scores for weighting but instead thresholded the various measurable criteria
(county splitting, population deviation, compactness) to be in a reasonable range,
which amounts to a uniform walk on a restricted state space. Unlike the score-based
approach above, the chain is not up-weighting plans that are better aligned with the
districting principles. It means all allowable plans are equally likely in the steady state.

This is exactly what is needed to apply the CFP theorem and test. In the paper,
the null hypothesis that the enacted plan was drawn from the uniform distribution is
rejected with p-values between .0001 and .0000001 depending on the chosen partisan
metric, using chains of approximately a trillion steps. And Pegden’s expert report found
even more eye-popping p-values in litigation. That means you can be very confident
that the enacted plan wasn’t chosen uniformly at random because its partisan behavior
is a great deal more Republican-favoring than the other plans that were found by the
chain.

But so what? After all, the Republican legislators never claimed that they were
choosing a plan blindly from all the possibilities, and humans are terrible at imitating
uniform distributions even when they try. In order for this to have strong persuasive
power, you’d want to be sure that this test doesn’t merely tell you that a plan was made
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by people rather than a computer! In Duchin’s use of the CFP test while consulting
for the Pennsylvania governor, she included evidence that a plan constructed by
the governor’s map-making team (without her involvement) passed the test—it had
partisan properties typical of the observations over long chains. On the other hand, a
new compact plan created by members of the legislature failed just as badly as the
original it was vying to replace.

Doing this kind of double-check—making sure you have not inadvertently set up a test
that only computers can pass—is essential for rolling out this test on a wider scale, as
is more study of its gameability.a Nonetheless, this way of arguing that a plan has
been “carefully crafted” to be much more favorable to the party that controlled the
process than a great bulk of similar plans has an unmistakable appeal, and has been
found persuasive by the court in Pennsylvania, and later in North Carolina.

aThis is particularly true since later improvements [13] havemassively strengthened the
sensitivity of the test by upgrading from a p-value on the order of

p
ε to one on the order of ε,

heightening worries about false positives.

A recombination step will typically change the assignment of many nodes at once,
which allows for far quicker traversal of the state space. At each step, two districts
are merged, forming a graph of twice the desired size. Next, a spanning tree is
chosen for that graph. Then, we seek an edge in the tree that we’ll call a balance
edge: when we cut it, the two new pieces that are formed should have equal size.
Replacing the twomerged districts with these two formed by cutting the tree gives
us a new districting plan. This process is cartooned in Figure 11.

As with the flip walk, recombination admits many variants. For example, there are
multiple ways to construct random spanning trees of the subgraph andmultiple
ways to seek and select a balance edge to cut. We could alsomergemore than two
districts at a time (though at the possible cost of more complexity in the partition
step). In the bigger picture, there is no need to use spanning trees at all, as any
method for partitioning a merged subgraph could be used to generate the next
plan. Nonetheless, we will stick with two-district-at-a-time spanning-tree-based
methods for the rest of this exposition, and we will call that Markov chain ReCom.

ReCom has threemajor features that differentiate it from flip chains. One is that
there is far less autocorrelation from one plan to the next, which promotes faster
convergence and avoids some of the rigidity that made physics-motivated tech-
niques less effective for flip steps. Second, it scales well with the size of the graph
being partitioned, because its spanning tree step has polynomial complexity and
the number of steps needed to touch all districts is proportional to the number
of districts, not the number of units. Finally, it does not need careful weighting to
obtain reasonably compact plans.
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17 .8 SPANNING TREES

As we’ve seen, a graph is a collection of vertices, together with edges that join some
of them pairwise. A tree is just a graph with no cycles: there is no edge path that
starts and ends at the same vertex without backtracking. And so for any graph, you
can create a spanning tree—a tree that covers all of the vertices—just by removing
edges that appear in cycles until there are none left.

To illustrate this, consider the 3×2 grid graph. It has seven edges, and you can make
a spanning tree by removing any two of them while being careful not to disconnect
the graph. There are exactly fifteen ways to do this:

For a 3×3 grid graph, there are 192 possible spanning trees and for a 4×4 there
are 100,352—the count grows fast! Let’s define sp(G) to be the number of spanning
trees of a graph G. There is a beautiful little formula that counts them for you. It is
attributable to the physicist Gustav Kirchhoff, as part of his study of electrical circuits
in the nineteenth century. First, form the n ×n graph Laplacian L by putting the n
vertex degrees on the diagonal and subtracting off the adjacency matrix of the graph.
This matrix L encodes all sorts of fundamental information about our graph. If G
is connected, then sp(G) is just 1/n times the product of the nonzero eigenvalues of
L. You can compute this straight from L by eliminating any row and corresponding
column to form an (n −1)× (n −1) minor, then taking its determinant! For our 3×2
example, we get

L =



2 −1 −1 0 0 0
−1 2 0 −1 0 0
−1 0 3 −1 −1 0

0 0 −1 0 2 −1
0 0 −1 0 2 −1
0 0 0 −1 −1 2

 ; sp(G) = det


2 0 −1 0 0
0 3 −1 −1 0
0 −1 0 2 −1
0 −1 0 2 −1
0 0 −1 −1 2

= 15.

For us, spanning trees will be a crucial device for partitioning because of a key feature:
if you cut any single edge of a tree, you have divided the graph into exactly two parts.

One last thing to know about spanning trees before we move on: there are remarkably
efficient algorithms for generating them randomly! In particular, Wilson’s algorithm
(based on loop-erased random walk) can be used to get near-uniform sampling of all
the spanning trees of G in polynomial time. So when we need to find a spanning tree
as a step in a recombination algorithm, we can usually do it fairly fast, even for large
graphs.
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Now let’s consider what the spanning tree count sp(G) can be said to measure about
a graph G. One thing to note is that sp(G) = 1 if and only if G is a tree. This means
that a path has only one spanning tree, no matter how long it is. But on the other
hand, the number of spanning trees of a grid-graph grows explosively. It’s not hard to
convince yourself that the spanning tree count is greater when a graph is “plumper,”
and that it’s reduced dramatically by “tentacles” or “necks.” From this point of view,
it’s reasonable to treat sp(G) as a compactness score for the graph!

To read more about the basics of spanning trees, most introductory texts in computer
science or combinatorics cover properties and elementary algorithms, such as Cameron
[15]. To read more about what spanning trees might have to do with compactness,
check out Duchin and Tenner [16].

Figure 11: The basic recombination step: two districts are merged, a spanning tree is chosen, a balance
edge is selected and cut, leaving two new districts.

Recently, Cannon et al. introduced a reversible variant of ReComwith a prescribed
stationary distribution [17]—that is, we know exactly howmuch some plans are
weighted relative to the others. It’s even very easy to write down that stationary
distribution in closed form. Recall from Sidebar 17.8 that sp(G) is the number of
spanning trees of a graphG, which can be regarded as a kind of compactness score
for the graph. Suppose a districting plan P is composed of districts P1, . . . ,Pk . Can-
non et al. [17] show that the stationary distribution of reversible ReCom puts a
weight on P that is precisely proportional to∏k

i=1 sp(Pi ), the product of the span-
ning tree counts of its districts. That means that plans are naturally weighted by
compactness!

Even though “regular” ReCom does not have exactly this stationary distribution, it
draws a similar distribution of plans so that it creates compact ensembles without
any tuning, and case studies have found extremely fast convergence in summary
statistics.

RECOM CASE STUDIES

Wewill briefly describe two case studieswithReCom chains: a runonCongressional
districts in North Carolina and another on state House districts in Virginia. The
North Carolina study was focused on the partisan gerrymandering case Rucho v.
Common Cause, intended to demonstrate whether different Markov chainmeth-
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ods might hope to give similar answers. And the Virginia study was directed at
analyzing a racial gerrymandering case, Bethune-Hill vs. Virginia State Board of
Elections (2019), which revolved around themanipulation of Black population in
the state’s legislative districts.

Let’s start with North Carolina. There, we convened a team of mathematicians and
law scholars to write a “friend of the court” brief aimed at helping the Supreme
Court to understand the recent Markov chain breakthroughs.12

We aimed to see how a partisan-neutral ensemble of compact, contiguous, popula-
tion-balanced plans would compare to the carefully tunedDuke output. To do this,
we used precincts as the building blocks and ran a ReCom chain for 100,000 steps,
allowingmaximal population deviation of 2% from ideal.13 That’s it! In a few hours
on a standard laptop, we get a large and diverse collection of plans.

Figure 12 shows that this very simple run gave outputs that are remarkably con-
sonant with the Duke ensemble. In both, at least 50% of plans have Democrats
winning districts indexed 9 through 13, whichmeans 5 seats out of 13, and roughly
25% of plans have Democrats winning 6 seats. By contrast, the plans enacted in
2012 and 2016 had only 3 seats for Democrats in this vote pattern, which is in line
with the notoriously brazen assertion by David Lewis, that he had commissioned
map locking in a 10–3 Republican advantage only because he couldn’t find a way
to get an 11th seat.

We highlight this comparison because it is encouraging to see that two very differ-
ent Markov chainmethods give harmonious answers. To see more about North
Carolina ensembles and the effects of layering in various districting criteria, visit
the GitHub repo for this chapter [18].

Next we turn to Virginia’s 100-seat House of Delegates, the subject of the long-
running lawsuit Bethune-Hill v. Virginia State Board of Elections. Blocks, rather
than precincts, were the natural choice of geographic units to analyze Virginia,
because theirHouseplans donot in fact keepprecinctswhole (and are only allowed
1% population deviation)—just as importantly, vote totals at the precinct level are
less salient in a racial gerrymandering case. Thus, the dual graph of Virginia has
285,762 nodes, which is far out of range to expect good performance from a flip
chain.

In this study, we used a ReCom ensemble to shed some light on VRA litigation. As
we’ve heard, VRA law is very tricky, because it centers on the creation of effective
districts for the minority group, in this case Black voters, to elect candidates of
choice. To do that requires an estimate of voters’ preferences by racial group, which
12Fully, it’s the Amicus brief of mathematicians, law professors, and students in support of appellees

and affirmance. As a historical note, we believe it to be the first Mathematicians’ Brief (so named) for
the Court. There was a Statisticians’ Brief in Gonzalez v. Planned Parenthood (2007) arguing that the
government hadmisrepresented p-values in its arguments about late-term abortion. And there was
a Computer Scientists’ Brief in Lotus v. Borland (1996) weighing in on whether certain elements of
computer interfaces weremore like languages or functions, for copyright purposes.
13For partisan cases, we consider it highly valuable to use precise cast vote totals, whichmeans that

precincts are the smallest usable unit. Since those are bigger than blocks, we will typically allow 1–2%
population deviation in order to have theMarkov chainmove efficiently. A professional mapmaker can
easily refine such a plan to zero balance.



O
nline

Pre-print
3. MCMC for redistricting 373

Figure 12: Images from theMathematicians’ Brief. Fixing a vote pattern (Senate 2016), we order the
districts in each plan from the smallest (1) to the highest (13) Democratic share of the two-party vote.
The boxes show the 25th–75th percentile vote share observed in the ensemble, and the whiskers show
1st–99th percentile. Top row shows the Duke ensemble compared to an untuned ReCom ensemble:
not identical, but substantially similar. Bottom row highlights the districts indexed 10 and 11, and
shows blatant packing and cracking in the legislatures’ plans compared to the ReCom ensemble, or the
bipartisan judges’ plan. (The ensemblemean is marked with a line in the bottom row.)

is not immediate in a systemwith a secret ballot. The state of the art for racially
polarized voting analysis is a method called “ecological inference” or EI; Bethune-
Hill plaintiffs’ expert Max Palmer performed EI in all of the house districts of the
state, finding that every challenged district was expected to favor a candidate of
choice for the Black community in a general election as long as its electorate was at
least 45% Black by voting age population (BVAP) [19]. In fact, by Palmer’s methods,
just 37-38%BVAPwould suffice in all but one district. None of the districts requires
55% BVAP, so we treated the range of 38–55% BVAP as a critical one for plausibly
effective districts.

Howmany districts can be simultaneously created that are over 50% BVAP? How
about over 37% BVAP?We created an ensemble of alternative plans that are com-
pact, contiguous, and population-balanced to within the 1% deviation limit pre-
scribed in Virginia law. We found that just taking 20,000 accepted ReCom steps
and recording every single plan that was encountered gave statistics that were
consistent across different starting points or further run lengthening.

We found that hundreds of plans in our race-neutral ensemble had 15 districts in
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← 12 challenged districts→← 4 →← 9 districts→

Figure 13: Black voting age percentage (BVAP) by district in an ensemble covering the region of Virginia
affected by the Bethune-Hill lawsuit. Red shows the levels in the challenged plan. Boxes show the
25th–75th percentile of the ensemble and whiskers show 1st–99th percentile, as before. We see that
packing in the 12 challenged districts has led to cracking in the next 4, and even the following 9.

our plausible range of effectiveness, as opposed to 12 districts in the Republican
legislators’ plan.... and 13 in the Democratic counter-proposal. So both sides are
leaving opportunity districts on the table. More than that, the analysis reveals the
costs of packing in the plan that was challenged by the lawsuit: the elevation of
Black population in the first 12 districts is balanced out by depressed Black popula-
tion that is not evenly distributed over the other districts, but instead concentrated
in the ones with the highest prospects for Black voting power, alone or in coalition
with other groups (see Figure 13).

These examples illustrate that ReCom lets you generate a large collection of plans
with far less user choice (parameter-tuning, temperaturemanipulation). It puts
Felix Frankfurter’s haunting challenge—finding the neutral baseline—within reach
of laptop computing.
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3 .5 SURVEY OF OTHER SAMPLING
APPROACHES

There are numerous other district-generationmethods out there with various pros
and cons. In particular, three political scientists have developed notable sampling
methods, which we’ll briefly describe.

Jowei Chen (University of Michigan) uses an agglomerative algorithm that is based
on iterative merging (see Chapter 16), and has made numerous court appearances
based on generated ensembles, typically containing 100–200maps.14 Hismethod
is intuitive to describe: growing and merging regions amoeba-style until they
cover the space with the correct number of districts. These techniques are likely
to be useful in the future for finding plans that can be used as starting points in
various ways: for initializing a random walk, or as a jumping-off point for the
deliberative work of a commission. On the other hand, themethod comes with no
control or description of the sample distribution, and so provides no grounding
for statistical claims. Due to the high rejection rate, agglomerative techniques have
difficulty generating diverse ensembles and sometimes have difficulty generating
large ensembles at all. Given these various limitations, agglomerative methods are
likely to have worryingly high false-positive rates if used for outlier analysis.

Wendy Cho leads a team at the University of Illinois, with supercomputing expert
Yan Liu as a major collaborator. Theirs is an evolutionary algorithm that uses a flip
stepmost of the time, then occasionally applies a crossover step based on the com-
mon refinement of two partitions. Themain upside is that, as discussed in Chapter
16, evolutionary algorithms can do an excellent job of heuristic optimization—that
is, they can find “good” plans—andmanagingmultiple populations lets you suc-
cessfully take advantage of many computing cores in parallel, so the algorithm
runs very fast. On the other hand, you lose touch with the theory guaranteeing
convergence to a steady state, so it’s not clear how the quickly proliferating plans
are distributed. Furthermore, the parallelization is carefully engineered for the
BlueWaters computing environment (a research supercomputer at University of
14Even if drawing from a well-justified probability distribution, this very small sample sizes make

unlikely events look impossible. For instance, if something occurs 1% of the time, there is a greater than
one in three chance that it will be entirely absent from a collection of 100maps. (.99100 ≈ .366)
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Illinois Urbana-Champaign) and the code is not public, making it quite hard to
draw comparisons between this and other methods.

Kosuke Imai is a political scientist and statistician at Harvard. His team, like Duke’s,
doesphysics-inspiredMCMCwith temperature variation (in their case, a technique
called parallel tempering). Their proposal flips a few nodes at a time rather than
one, providing amodest acceleration. They havemade amajor and commendable
effort to provide benchmarking for all the methods in the redistricting community
by developing some (very) small datasets with complete enumeration.15 Equally
commendable: theymake their code publicly available!

4 EXPLORING WITH ENSEMBLES

4 .1 NOT JUST FOR LITIGATION!

The method of ensembles has many applications for redistricting analysis and
reform beyond the adversarial setting of challenging plans in court.

Criteria tradeoffs. The Virginia study described abovemainly relied on “vanilla”
ensembles, made only with compactness, contiguity, and population balance.
In DeFord and Duchin [21], we layer inmany other criteria—tighter population
balance, preference for keeping cities and counties intact, attention to voting rights
share—to see how they interact. We found no basis for some “folk knowledge” that
was circulating as Virginia considered a constitutional amendment for redistricting
reform, such as the idea that requiring higher compactness would hurt minority
representation or that keeping cities intact would favor Republicans. In fact, the
preservation of cities and counties had the effect of narrowing observed partisan
outcomes, reducing the frequency of maps that had the greatest advantage for
either party.

Partisanmetrics. Sometimesmetrics aredesigned tomeasureone thing, but end
up being sensitive to factors other than the ones that are advertised. For instance,
Chapter 2 shows that the efficiency gap, advertised as ameasure of packing and
cracking, actually only depends on howmany seats are won by each side. You can
similarly study othermetrics like partisan symmetry scores to see how they behave
when tested on real data andmany thousands of plausible districting plans [22].
We show that the partisan symmetry standard hasmany bugs in practice, including
systematically reporting advantage for the wrong party in some realistic cases. (We
dub this the “Utah Paradox”!)

Nesting. Alaska law requires the 40 House districts in their state legislature to
nest 2-to-1 within the 20 Senate districts. (Nine other states had similar nesting
rules in the last redistricting cycle.) Suppose you were handed the current House
map and required to come up with a pairing of adjacent House districts. We found
15Of particular mathematical interest is their approach to approximate enumeration using a data

structure called Zero-suppressed Binary Decision Diagram [20].
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that there are 108,765 possible matchings in Alaska, which is an imperceptible
sliver compared with the usual size of a redistricting problem. Nevertheless, we
found that the ability to choose thematching gives almost as much control of the
partisan outcome as if one were drawing themap from scratch [23].

Competitiveness. Here, ensemble methods are used to study a range of pos-
sible rules for promoting competitiveness in districting. Using two methods—
winnowing to themost competitive plans in a neutral ensemble and hill-climbing
with flip steps to preferentially createmore competitive plans—we show that quan-
titatively prescriptive language that has been appearing in recent reformmeasures
may be ineffective or generate unintended effects in the future [24].16

Least change. What if you have a reason to want a map that makes the least
change from a previous one, such as under a rule favoring the preservation of
district cores? Mattingly et al. [11] consider this with an experiment using local
sampling. Short runs are carried out, rejecting proposals that have more than
40 nodes assigned to different districts than in the initial plan. In Chapter 14 an
approach to this, by introducing an entropy-basedmetric on the space of plans, is
also given.

Coalitions and alternative voting systems. Finally, what if you are not sure your
community is well served by districts at all? We use single-member districts by
law at the Congressional level, but counties and cities havemuchmore latitude
to design a system of election. MGGG has carried out tailored studies that look
at Asian communities in Santa Clara, CA [26], Latino and Asian communities in
Lowell, MA [27], and Black and Latino communities in Chicago, IL [28]. In all three
cases, we recommended serious consideration for ranked choice voting inmulti-
member districts (see Chapter 20 and Chapter 21), finding that it performs at least
as well as the districting options found by algorithmicmeans, but with enhanced
opportunities for coalitional representation.

4 .2 AN INVITATION

Beyond theMarkov chainmethods alreadydeveloped, there is still significant room
for creativity in designing elementarymoves on graph partitions. Newmethods
should strive for easy implementation, low rejection rate, adaptability to varied
districting criteria, and of course theoretical properties like provable ergodicity or
reversibility. Althoughprobably extremelydifficult, itwould alsobe very valuable to
provemixing time bounds for any of the graph partitionmethods that are currently
in use, where many problems are even open for grid graphs. Lower bounds are
useful because theywarn of likely failure of certain approaches at large scale; upper
bounds would give better statistical guarantees.

With respect to the basic spanning tree ReCom proposal, there aremany natural
questions about the combinatorics. (What share of trees have a cut that partitions
16Thedistricts foundbyvery short andsimplehill-climbing runswere similar toextremelycompetitive

plans hand-made for the 538 Atlas of Redistricting project [25].
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the nodes equally or near-equally? What kinds of planar graphs have the most
spanning trees? and so on.)

Often, algorithms that have poor worst-case performance can still be efficient on
nice classes of graphs. Moving beyond grid graphs and other lattices, it would
be fundamentally interesting to understand the properties of the graphs realized
as dual to Census and precinct geography.17 This would be useful not only for
complexity analysis of algorithms, but also to answer basic intriguing questions
like whether different states and places have any artifacts of planning policy visible
in the graphs themselves—or even within a state, whether cities are detectable
from the abstract dual graph alone.

There would be immediate applications for efficient multi-resolution partitioning
methods that start with larger units before refining with smaller sub-units. Priori-
tizing preservation of counties, cities, or COI could benefit frommulti-resolution
mapmaking, and a block-level tuning step could provide population balance at
the end of amapmaking process rather than foregrounding it at the beginning.

Last but not least, stability and robustness—demonstrating that consonant results
are obtained within and across techniques as user choices vary—are paramount
concerns as the toolkit continues to expand. Aswe have seen, there aremany setup
decisions that must bemade in order to design a sampling algorithm for a specific
case or state. It is essential to measure the sensitivity of results to model design,
tuning, and data perturbation. Determining conditions for reliable and robust
findings is perhaps themost important open question in this space.

5 CONCLUSION: STILL NOT A SOLVED

PROBLEM

The overarching goal of MCMCmethods for redistricting is to generate ensembles
of alternative maps that can put a proposed plan in context of the full universe
of possibilities. Setting this up requires hard work to certify that we are drawing
samples according to a clear rule for weighting somemore highly than others. In
order to avoidmaking a test that only computers can pass, we need to know that
our ensembles are sufficiently diverse to account for themany ways that benign
but unspoken principles can make people’s maps different in subtle ways from
computer outputs. Ground truth is hard to come by in redistricting, but we should
take it where we can, and use it to calibrate our tests.

Redistricting pushes mathematical knowledge to the research frontier, but the
scientific consensus is crystallizing around powerful and efficient methods of
analysis. Or in other words...
17Inmany cases, the dual graphs are planar andmostly triangulated (as in Figure 6), but when the

units are disconnected (as precincts quite often are) the combinatorics can get substantially worse.
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