# The Known Sizes of Grid Metagraphs

At MGGG, we think that one of the reasons that redistricting is hard to study is that the space of possibilities (i.e., valid districting plans) is so huge it's unthinkable by humans. And relatedly, the number of ways to achieve any simple objective is overwhelmingly large.

We think that to study districting plans in context, you need to understand the space of alternatives. So we are working on the science of sampling from these universes of districting plans. As a simplified warmup problem, we can ask how many ways there would be to district a jurisdiction made up of a small number of units with equal population arranged in a perfect grid. We can then build up the complexity from there. But this problem is already formidable!

In this table, the row marked **nxn → d** shows the number of ways to partition an n
by n grid into d
districts (or connected pieces). The columns describe how much size difference is tolerated
among
the districts.
The two halves of the table distinguish whether, to be considered
contiguous, the districts would have to be transitable by a chess rook (making only NSEW
moves) or a
chess queen (which can also move diagonally). Queen contiguity allows many more district
shapes.